Proton CT A novel diagnostic tool in cancer therapy

Monika Varga-Kofarago MTA Wigner RCP

7th September 2018

HEPHY Seminar

Cancer statistics and therapies

Figure 2.1: Number of new cases and rates, by age and sex, all malignant neoplasms (exc NMSC), UK, 2007

Cancer statistics and therapies

Figure 2.1: Number of new cases and rates, by age and sex, all malignant neoplasms (exc NMSC), UK, 2007

- Contributions to successful treatment of cancer
 - 45-50% surgery
 - 40-50% radiotherapy
 - 10-15% chemotherapy

• Radiotherapy is an important weapon in the battle against cancer

K. Peach, Heavy lons in Science and Health workshop, Bergen, 2012

Monika Varga-Kofarago

Proton CT - A novel diagnostic tool in cancer therapy

Radiotherapy and its problems

- Goal: damage the DNA of cancer cells
- Direct or indirect ionization
- Treatment with photons or charged particles (e.g. protons)
- Photons: mostly indirect ionization through forming free radicals
- Protons: mostly direct ionization

Radiotherapy and its problems

- Goal: damage the DNA of cancer cells
- Direct or indirect ionization
- Treatment with photons or charged particles (e.g. protons)
- Photons: mostly indirect ionization through forming free radicals
- Protons: mostly direct ionization
- Need to minimize the damage to healthy tissue

Hadron therapy – advantages

- Photons are absorbed mostly at the entrance
- Charged particles
 - lose most of their energy in the Bragg peak
 - Relatively low dose in front of the tumor
 - Sharp fall-off of dose deposition (<mm)

Hadron therapy – advantages

- Irradiate from one or four angles
- Relative dose to healthy tissues is much more in the case of photons

Hadron therapy – advantages

- Irradiate from one or four angles
- Relative dose to healthy tissues is much more in the case of photons

Irradiation choices

	Photons	Protons	Carbon ions
Integral out-of-field dose	1	0.3 – 0.5	< 0.3
Relative Biological Effectiveness	1	1.1	> 3 in Bragg peak

- Integral out-of-field dose: the smaller the better (ideally 0)
- Relative Biological Effectiveness: the higher the better
- Qualitative difference between photons and carbon-ions

Irradiation choices

	Photons	Protons	Carbon ions
Integral out-of-field dose	1	0.3 – 0.5	< 0.3
Relative Biological Effectiveness	1	1.1	> 3 in Bragg peak

- Integral out-of-field dose: the smaller the better (ideally 0)
- Relative Biological Effectiveness: the higher the better
- Qualitative difference between photons and carbon-ions

Hadron therapy centers in Europe

- Three C-ion centers
- 27 proton centers

Monika Varga-Kofarago

Proton CT - A novel diagnostic tool in cancer therapy

Treatment facilities

Injector

Synchrotron

HEBT+Gantry

Medical Areas

Proton CT - A novel diagnostic tool in cancer therapy

HIT

Heidelberger Ionenstrahl-Therapiezentrum

Treatment facility

lon source

Synchrotron

Treatment room

Superconducting gantry

Extraction and beam transport

A typical ion facility in 2014

- Beam species
 - light ions (e.g. C)
 - protons
- Beam energies
 - Therapeutic beam: range in water: 33 38 cm
 - \rightarrow carbon ion (6+): 80 450 MeV/nucleon
 - \longrightarrow proton: 40 250 MeV
 - Diagnostic beam: relativistic proton beam: 800 MeV
- Energy resolution: $\Delta E/E \sim 0.2\%$
- Beam quality
 - ullet Pencil beam ightarrow 3D voxels spot size few mm
 - ullet ~ 1 mm Bragg peak width
- ullet $\sim 1-2$ min per treatment field

- Stopping power in front of the tumor to be known precisely
- Stopping power is described by Bethe-Bloch formula: $dE/dx \sim \text{electron density} \times \ln \frac{\max. \text{ energy transfer in single collision}}{\text{effective ionization potential}^2}$
- Derive stopping power from X-ray CT
- X-ray attenuation in tissue depends also strongly on Z (Z⁵ for photoelectric effect)

Proton therapy – missing information

 \bullet Scaled Hounsfield Units \sim attenuation coefficient

Not a clear relation with the stopping power

Schaffner, B. and E. Pedroni, The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power. Phys Med Biol, 1998. 43(6): p. 1579-92.

Monika Varga-Kofarago

Range uncertainties

- Single energy CT: up to 7.4% uncertainty
- Target volume is increased by up to 1 cm in beam direction
- Avoid beam directions with a critical organ behind the tumor
- Dual energy CT: up to 1.7% uncertainty
- Proton CT: up to 0.3% uncertainty

A comparison of Jual energy CT and proton CT for stopping power estimation David C. Hansen,^{1, a)} Joao Seco,² Thomas Sangild Sørensenn,³ Jørgen Breede Baltzer Petersen,⁴ Joachim E. Wildberger,⁵ Frank Verhaegen,⁶ and Guillaume Landry⁷ ¹⁾Department of Experimental Clinical Oncology, Aarhus University

Proton CT – concept

H.F.-W. Sadrozinski / Nuclear Instruments and Methods in Physics Research A 732 (2013) 34-39

Proton CT – concept

• \overrightarrow{x} and \overrightarrow{p} from beam optics and scanning system • $\overrightarrow{x'}$, θ , φ and E' to be measured

Proton CT – concept

- \overrightarrow{x} and \overrightarrow{p} from beam optics and scanning system • $\overrightarrow{x'}$, θ , φ and E' to be measured
- Reconstruction of trajectories in 3D \longrightarrow place of irradiation
- \bullet Measurement of range in external absorber \longrightarrow lost energy
- \bullet Before the treatment \longrightarrow 3D map of electron density in target
- ullet Quasi-simultaneously with therapeutic beam o online verification of dose

Proton CT – images

- Transmission map
 - Records loss of protons
 - Nuclear reactions

- Scattering map
 - Records scattering of protons
 - Coulomb potential

- Energy loss map
 - Records energy loss of protons
 - Bethe-Bloch

Cecile Bopp. PhD thesis, Strassbourg, 2013

Requirements of the detector

- High position resolution (tens of μm)
- Simultaneous tracking of large particle multiplicities $(10^7 10^9 \text{ protons/s})$
- Fast readout
- Radiation hardness
- Front detector: low mass, thin sensors $(50 100 \ \mu m)$
- Back detector: good range resolution

₩

- High granularity digital sampling calorimeter
- Monolithic Active Pixel Sensors (MAPS) as active layers

Monolithic Active Pixel Sensors (MAPS)

- Silicon sensors
- Using TowerJazz 0.18 μm CMOS imaging process
- High-resistivity (> $1k\Omega$ cm) epitaxial layer on p-type substrate
- Deep PWELL shields NWELL of PMOS transistors
 - Allows full CMOS circuitry in active area
- Moderate reverse substrate biasing possible
 - Larger depletion volume

- ALPIDE ALICE PIxel DEtector
- Developed for the upgrade of the ALICE Inner Tacker System
- Large silicon sensor (15 mm \times 30 mm)
- 512 imes 1024 pixels
- $\bullet\,$ Pixels are 27 $\,\mu m\, \times\,$ 29 $\,\mu m$
- Digital readout with priority encoder
- Thin sensor (50 μm or 100 μm)
- Efficiency > 99%
- Resolution $\sim 5~\mu m$

C												
5		÷		÷.	•	÷		÷	÷		÷	
<u> </u>	÷		+	÷.		÷			÷			
L5												
			-	0								
				51)	n	nr	n			 		

• Fake hit rate is below sensitivity for most measurements

• Fake hit rate is below sensitivity for most measurements

• Efficiency is above 99% below 220 electrons

- Fake hit rate is below sensitivity for most measurements
- Efficiency is above 99% below 220 electrons
- No degradation from TID

- Fake hit rate is below sensitivity for most measurements
- Efficiency is above 99% below 220 electrons
- No degradation from TID
- Small degradation from NIEL

- Fake hit rate is below sensitivity for most measurements
- Efficiency is above 99% below 220 electrons
- No degradation from TID
- Small degradation from NIEL
- Large operational margin after irradiation

Resolution and cluster size

• Cluster size is around 2

Resolution and cluster size

- Cluster size is around 2
- Resolution below 5 μm below 200 electrons

Resolution and cluster size

- Cluster size is around 2
- \bullet Resolution below 5 μm below 200 electrons
- No degradation from TID or NIEL
- Operational margin doesn't change after irradiation

Digital calorimeter prototypes

- Silicon-tungsten sampling calorimeter
- Optimized for electromagnetic showers
- Active layers: MAPS (MIMOSA 23 IPHC Strasbourg)
- Compact design 4 imes 4 imes 11.6 cm³
- 24 layers
- Absorbers: 3.5 mm of W

Simulations results

Photons

Electrons

Muons (MIP)

Protons

Results from the prototype

- Tracking of a single proton
- Collecting clusters along the trajectory
- Fitting a Bragg curve

Bortfeld, T. An Analytical approximation to the Bragg curve for therapeutic proton beams. Med. Phys 24 2024-33 (1997)

Bragg-Kleeman model fit to depth-dose data

Results from the prototype

H. Pettersen, PhD thesis, UiB, 2018

• Good agreement between data and simulations

Results from the prototype

H. Pettersen, PhD thesis, UiB, 2018

• Good agreement between data and simulations

Optimization of the design

- Geometry
 - Front area: 27 cm x 15 cm
- Longitudinal segmentation
 - Number of sensitive and absorber layers: 41
- Absorber
 - Energy degrader, mechanical carrier, cooling medium
 - Material choice: Al
 - Thickness (3.5 mm)

Mounting

- ALPIDE mounted on thin flex cables
 - Aluminum-polyamide dielectrics: 30 μm Al, 20 μm plastic
 - Design and production: LTU, Kharkiv, Ukraine
- Intermediate prototype
 - Chip cable with two ALPIDE sensors

Mounting

- ALPIDE mounted on thin flex cables
 - Aluminum-polyamide dielectrics: 30 μm Al, 20 μm plastic
 - Design and production: LTU, Kharkiv, Ukraine
- Intermediate prototype
 - Chip cable with two ALPIDE sensors
- Final system
 - $\bullet\,$ Flexible carrier board modules with 2 \times 3 strings with 9 chips

Group

- Organization
 - University of Bergen
 - Bergen University College
 - Helse Bergen
 - Utrecht University
 - DKFZ Heidelberg
 - Wigner Budapest
- Financing

• 44 million NOK (\sim 4.5 million EUR), 5 years (2017-2021)

Norwegian government has decided to build two particle therapy facilities (Oslo, Bergen), to be operational by 2022

- Finishing the optimization of the design
- Construction of prototype
 - First chip cables with mounted chips are being tested
 - First sensor module: December
- Start mass production of ALPIDE chips
- Extensive commissioning with proton beams
- Commissioning with He beams
 - HeCT less multiple scattering, better resolution PhD thesis C. Collins Fekete, Univ. Laval, 2017
 - \bullet Carbon beam with 1% Helium (as proposed by GSI/HIT and CNAO)

Conclusions

- ullet Hadron therapy \longrightarrow lower unnecessary dose for the patient
- Uncertainty in energy loss from extrapolation from CT
- pCT: novel diagnostic tool to reduce the uncertainty
- Digital sampling calorimeter made of ALPIDE sensors
- First sensor module by the end of the year

Thank you for your attention!

