Thermal Simulations of a Proton CT Calorimeter Detector

Ákos Sudár ^{1,2}

Róbert Kovács 1,2 , Mónika Varga-Kőfaragó 1 and Gergely Gábor Barnaföldi 1

¹ Wigner Research Centre for Physics
 ² Budapest University of Technology and Economics

on behalf of Bergen proton CT collaboration (full collaboration list)

Ref: Front. in Phys. Med. Phys. Im. ID: 568243, Phys. in Med. & Bio. ID: 110623.R3, NIM A 860 (2017) 51-6152, Phys. Med. 63 (2019) 87-97

Forum on Tracking Detector Mechanics 2021, 19 May 2021

Motivation: improve proton therapy

- Original idea by Wilson in 1946
- Widespread in the last 20 years
- More advantageous dose distribution due to Bragg-peak
 ⇒ less side effect

10Gy 20Gy 35Gy 50Gy 70Gy

X-ray

Proton

Proton therapy and proton imaging

Incoming vector

and energy

Energy deposit in the patient

Incoming vector

and energy

Energy deposit in the patient

How much heat is generated in the sensitive area?

- \bullet 4644 ALPIDEs $\,\times\,$ 300 $\frac{mW}{\text{ALPIDE}}\,\,\approx\,$ 1.4 kW heat generation
- \sim 300 \times 300 \times 200 mm³ sensitive volume
- Allowed temperature: $T_{Max}~=~30^{\circ}C$
- Allowed inhomogeneity in calorimeter part: $\Delta T = 5^{\circ}C$

How to transfer heat away? \Rightarrow Two cooling concepts

Air cooling

Water cooling

1D steady state Fourier equation:

$$0 = \lambda rac{\partial^2 T(x)}{\partial x^2} + q_v$$
 ,

where T(x): temperature , x: coordinate, L: length, q_v: volumetric heat generation and λ : thermal conductivity Boundary conditions, temperatures are T₀:

$$T(0) = T_0$$
 and $T(L) = T_0$.

Integrable differential equation \Rightarrow Solution:

$$T(x) = -\frac{q_v}{2\lambda}x^2 + \frac{q_v}{2\lambda}\left(\frac{L}{2}\right)^2 + T_0 \ . \label{eq:T}$$

Temperature distribution of water cooling

Calculations of air cooling

Heat conduction

The heat conduction in layer:

$$0 = \lambda \frac{\partial^2 T_c(x)}{\partial x^2} - \frac{Q_c(x)}{V_c} + q_0 \ .$$

 $T_c:$ layer temp. , $T_a:$ air temp. , $Q_c:$ heat transfer from layer to air, $q_0:$ volumetric heat generation, $V_c:$ layer volume, $V_a:$ air volume, A: contact area, $\lambda:$ layer thermal conductivity, $\rho:$ air density, c: specific heat capacity of air, v: airspeed, $\alpha:$ heat transfer coefficient between layer and air.

Calculations of air cooling

C1, C2, r1, r2, C3, C4 and \hat{c} are constants based on: $\alpha,$ A, L, $\rho,$ c, v, $\lambda,$ Vc and Va.

Boundary conditions:

$$\begin{array}{llll} T_a(x)|_{x=0} &= \ T_0 & \Rightarrow \ \hat{c} \\ \\ \frac{\partial T_c(x)}{\partial x}|_{x=0} &= \ 0 \\ \frac{\partial T_c(x)}{\partial x}|_{x=L} &= \ 0 \end{array} \right\} & \Rightarrow \ C_1 \ \text{and} \ C_2 \end{array}$$

Heat transfer coefficient (α) based on Tachibana and Fukui^[1]:

$$\alpha \approx \frac{\lambda}{\mathsf{D}_{\mathsf{e}}} 0.017 \left(1 + 2.3 \frac{\mathsf{D}_{\mathsf{e}}}{\mathsf{L}} \right) \left(1 - \frac{\pi \mathsf{D}_{\mathsf{e}}}{\mathsf{K}} \right)^{0.45} \mathsf{Re}^{0.8} \mathsf{Pr}^{0.33},$$

where λ : thermal conductivity, K: width of the gap, L: length of

the gap, d: thick of the gap, $D_e = 4 \frac{K \times d}{2K+2d} \approx 2d$: equivalent diameter, Re: Reynolds number, Pr: Prandtl number.

Warning! Strong extrapolation: α was measured for turbulent flows and we use them for laminar \rightarrow upper estimates α

[1]: Fujio Tachibana and Sukeo Fukui, Convective Heat Transfer of the Rotational and Axial Flow between Two Concentric Cylinders, Bulletin of JSME, 7(26):385-391, 1964.

Temperature distribution of air cooling

Comparison of the two cooling strategy

• Water cooling: $T_{max} = 23.2\ ^\circ C$ and $\Delta T = 3.2\ ^\circ C$

• Air cooling:
$$w = 10 \frac{m}{s}$$
 and $\alpha = 73 \frac{W}{m^2 \times K} \rightarrow T_{max} = 36.3 \text{ }^{\circ}\text{C}$ and $\Delta T = 2.8 \text{ }^{\circ}\text{C}$

- Requirement 1: T_{max} $\,<\,$ 30 $^{\circ}$ C, only water cooling meets
- Requirement 2: $\Delta T < 5 \,^{\circ}C$, both concept meet

Summary

- Bergen pCT Collaboration is developing a proton CT
- Data taking time: main limitation of available prototypes
 ⇒ Goal: overcome this limitation
- First test results expected within two years
- We investigated two cooling system concepts
- Water cooling met all requirements \Rightarrow under construction now

Thank you for your attention!

Members of the Bergen pCT collaboration: University of Bergen, Norway; Helse Bergen, Norway; Western Norway University of Applied Science, Bergen, Norway; Wigner Research Center for Physics, Budapest, Hungary; DKFZ Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Germany; Utrecht University, The Netherlands; RPE LTU, Kharkiv, Ukraine; Suranaree University of Technology, Nakhon Ratchasima, Thailand; China Three Gorges University, Yichang, China; University of Applied Sciences Worms, Germany; University of Oslo, Norway; Eötvös Loránd University, Budapest, Hungary

This work would not be possible without the support of the Research Council of Norway (Norges forskningsråd), grant number 859 250858; the Trond Mohn Foundation, grant number BFS2017TMT07; NKFIH/OTKA K135515, Hungarian Scientific Research Fund – OTKA.