Understanding the Underlying Event

G.G. Barnaföldi in collaboration with A.N. Mishra, G. Paic, and G. Bíró

Support: Hungarian OTKA grants, NK123815, K135515 Wigner GPU Laboratory

Ref: arXiv:2108.13938

Outline

1) Earlier studies

- What is UE? Why is this important for in HEP?
 - → theory, experiment, measures

2) New developments on UE

- Angular properties measures
 - → multiplicity, p_T spectra, parameter derivatives
 - → Tsallis thermometer

3) Comparison to event shape variable

- Spherocity measures and cross check
- → Conclusions: Extended UE definition

So what Uderlying Event is?

Theoretical point:

- Mainly non-perturbative QCD effect
 - → Initial & final state radiation
 - → Multiple parton interaction
 - → Color Reconnection (CR)
 - → intrinsic k_T
 - → Hadronization

So what Uderlying Event is?

Theoretical point:

- Mainly non-perturbative QCD effect
 - → Initial & final state radiation
 - → Multiple parton interaction
 - → Color Reconnection (CR)
 - → intrinsic k_T
 - → Hadronization

Experimental point

- Pedestal-like effects
 - → Activity in the event over MB
 - → Beam remnants (pile up)
 - → Trigger bias (jet criterion)

Earlier studies, motivation

Geometrical structure of an event

G.G. Barnafoldi: ELTE ElmFiz Seminar 2021

Geometrical structure of an event

How to separate jet & UE?

Jet finding & elimination:

- Surrounding Band (SB method),
 Find a jet, THEN define SBs
- IF SB₁ and SB₂ are equal, THEN eliminate the jet
 - → expensive (high statistics)
 - → sensitive to cuts

Correlation & background

- Traditional method by CDF
 - → burte force
 - → geometry info only

How to separate jet & UE?

Jet finding & elimination:

- Surrounding Band (SB method),
 Find a jet, THEN define SBs
- IF SB₁ and SB₂ are equal, THEN eliminate the jet
 - → expensive (high statistics)
 - → sensitive to cuts

Correlation & background

- Traditional method by CDF
 - → burte force
 - → geometry info only

Transverse spherocity:

$$S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i |\overrightarrow{p_{\mathrm{T}}}_i \times \hat{\mathbf{n}}|}{\sum_i p_{\mathrm{T}}_i} \right)^2$$

Thrust:

- $T_{\min} \equiv \frac{\sum_{i} |\vec{p}_{\mathrm{T},i} \cdot \hat{n}_{m}|}{\sum_{i} p_{\mathrm{T},i}}$
- → NO need for jet fin
- → Momentum & geometry infos

Precise spectra description

from low- to high-p_T

$$f(m_T) = A \cdot \left[1 + \frac{q-1}{T_s} (m_T - m) \right]^{-\frac{1}{q-1}}$$

- in multiplicity classes (pp, pA, AA)

$$\frac{dN_{ch}}{dy}\Big|_{y=0} = 2\pi A T_s \left[\frac{(2-q)m^2 + 2mT_s + 2T_s^2}{(2-q)(3-2q)} \right] \times \left[1 + \frac{q-1}{T_s} m \right]^{-\frac{1}{q-1}}$$

With PID:

$$\pi^{\pm}, K^{\pm}, K_s^0, K^{*0}, p(\bar{p}), \Phi, \Lambda, \Xi^{\pm}, \Sigma^{\pm}, \Xi^0, \Omega$$

- Wide range:

	pp	pA	AA
CM energy (GeV)	7000, 13000	5020	130-5020
Multiplicity range	2.2-25.7	4.3-45	13.4-2047

QCD-inherited scaling properties

$$f(m_T) = A \cdot \left[1 + \frac{q-1}{T_s} (m_T - m) \right]^{-\frac{1}{q-1}}$$

Parameter scaling with √s & multiplicity

$$A(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = A_0 + A_1 \ln \frac{\sqrt{s_{NN}}}{m} + A_2 \langle N_{ch}/\eta \rangle$$
$$T(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = T_0 + T_1 \ln \frac{\sqrt{s_{NN}}}{m} + T_2 \ln \ln \langle N_{ch}/\eta \rangle,$$
$$q(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = q_0 + q_1 \ln \frac{\sqrt{s_{NN}}}{m} + q_2 \ln \ln \langle N_{ch}/\eta \rangle,$$

QCD-inherited scaling properties

$$f(m_T) = A \cdot \left[1 + \frac{q-1}{T_s}(m_T - m)\right]^{-\frac{1}{q-1}}$$

Parameter scaling with √s & multiplicity

$$A(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = A_0 + A_1 \ln \frac{\sqrt{s_{NN}}}{m} + A_2 \langle N_{ch}/\eta \rangle$$
$$T(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = T_0 + T_1 \ln \frac{\sqrt{s_{NN}}}{m} + T_2 \ln \ln \langle N_{ch}/\eta \rangle$$
$$q(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = q_0 + q_1 \ln \frac{\sqrt{s_{NN}}}{m} + q_2 \ln \ln \langle N_{ch}/\eta \rangle,$$

Thermodynamical consistency

P = g
$$\int \frac{d^3p}{(2\pi)^3} Tf$$
, N = nV = gV $\int \frac{d^3p}{(2\pi)^3} f^q$,
s = g $\int \frac{d^3p}{(2\pi)^3} \left[\frac{E-\mu}{T} f^q + f \right]$, $\varepsilon = g \int \frac{d^3p}{(2\pi)^3} Ef$

New development to understand UE

Standard CDF definition

Standard CDF definition

Case I: Opening angle

Standard CDF definition

Case I: Opening angle

Case II : Sliding angle

Case I: Opening angle

- We open $\Delta \phi$ angle in steps of 20°. The binning starts from -10° to 10° and the last bin covers full azimuthal space i.e. -180° to 180° (MB). Case I is useful to investigate the evolution of the thermodynamical observables of the system.

Case II: sliding angle

- We make slices of the Δφ of size 20°. In this case, the results for the first bin 0 to 20°. are reported in two ways: including and excluding the leading particle in the result. Case II is a tool for exploring the geometrical structure of the Underlying Event.

Case I: Opening angle

Case II : Sliding angle

The simulated data

PYTHIA_v8240 Monash 2013 tune

- 1 billion non-diffractive collisions of pp
- C.m. energy: √s = 13 TeV
- Includes 2→ 2 hard scattering process, followed by initial and final state parton showering, multiparton interactions, and the final hadronization process.
- The events having at least three primary charged particle with transverse
- Min. momentum: $p_T > 0.15$ GeV/c
- Pseudorapidity: $|\eta| < 0.8$
- UE: Color Reconnection (CR, Multiple Parton Interaction (MPI) G.G. Barnafoldi: ELTE ElmFiz Seminar 2021

Case I: Opening angle "Pacman"

Case I: Opening angle

Case I: Opening angle "Pacman"

Case I: Opening angle

Case I: Multiplicity/MB

PYTHIA multiplicity with opening angle

PYTHIAs model UE: CR & MPI

Good fits with the parametrizations

More multiplicity in the NS

Getting flat in NS+TS

NS+TS+AS are mainly flat

as reaching MB

Case I: Opening angle

Case I: Multiplicity/MB

PYTHIA multiplicity with opening angle

Good fits with the parametrizations

More multiplicity in the NS

Getting flat in NS+TS

NS+TS+AS are mainly flat

as reaching MB

NS

NS + TS

Case I: Opening angle

NS + TS + AS

Case I: p_T spectrum

PYTHIA spectra with opening angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations
- Low p_T varies (T)
- High p_T is constant (q)
- Full opening is MB

Case I: p_T spectrum

PYTHIA spectra with opening angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations
- Low p_T varies (T)
- High p_T is constant (q)
- Full opening is MB

Case I: Tsallis fit parameters

PYTHIA spectra with opening angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations (red line)
- Opening the angle → constant T, lowest at MB
- Opening the angle → constant q
- Multiplicity ~ A
- Full opening is MB

Case I: derivatives of the parameters

- PYTHIA spectra parameter derivatives with opening angle
 - PYTHIAs model UE: CR & MPI
 - Opening the angle → constant T & q

$$\frac{\delta T_s}{\delta(\Delta\phi)} \to 0 \quad \& \quad \frac{\delta q}{\delta(\Delta\phi)} \to 0$$

No change beyond NS

- Multiplicity ~ A
- Full opening is MB

Case II: Sliding angle "cake slices"

Case II : Sliding angle

Case II: Sliding angle "cake slices"

Case II: Sliding angle

Case II: Multiplicity/MB

PYTHIA multiplicity with sliding angle

PYTHIAs model UE: CR & MPI

Good fits with the parametrizations

More multiplicity az NS

TS & AS are mainly flat

 With leading particle deviation is increased

Case II : Sliding angle

Case II: Multiplicity/MB

PYTHIA multiplicity with sliding angle

PYTHIAs model UE: CR & MPI

Good fits with the parametrizations

More multiplicity az NS

TS & AS are mainly flat

 With leading particle deviation is increased

Case II: Sliding angle

Case II: p_T spectrum

PYTHIA spectra with sliding angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations
- Low p_T is constant (T)
- High p_T varies (q)
- NS/AS are similar
- Need to consider w/o leading particle

Case II: Sliding angle

Case II: p_T spectrum

PYTHIA spectra with sliding angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations
- Low p_T is constant (T)
- High p_T varies (q)
- NS/AS are similar
- Need to consider w/o leading particle

Case II: Tsallis fit parameters

PYTHIA spectra with sliding angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations (red line)
- NS → highest T
- NS/AS → highest q
- TS → constant q, T
- Multiplicity ~ A

Case II: derivatives of the parameters

- PYTHIA spectra parameter derivatives with sliding angle
 - PYTHIAs model UE: CR & MPI
 - TS (+AS) → constant T & q

$$\frac{\delta T_s}{\delta(\Delta\phi)} \neq 0 \quad \& \quad \frac{\delta q}{\delta(\Delta\phi)} \neq 0 \quad \text{(for NS \& AS)}$$

$$\frac{\delta T_s}{\delta(\Delta\phi)} \approx 0 \quad \& \quad \frac{\delta q}{\delta(\Delta\phi)} \approx 0 \quad \text{(for TS)}$$

- NS → highest T
- NS/AS → highest q
- Multiplicity ~ A

On the Tsallis-thermometer

Case I: opening angle

- Need UE in PYTHIA → CR & MPI
- NS → highest T, lowest q
- TS/AS → constant q, lowering T
- MB → constant q, lowest T

On the Tsallis-thermometer

Case I: opening angle

- Need UE in PYTHIA → CR & MPI
- NS → highest T, lowest q
- TS/AS → constant q, lowering T
- MB → constant q, lowest T

Case II: sliding angle

- Need UE in PYTHIA → CR & MPI
- NS (with leading) is fully different highest T & highest q
- Beyond NS T is getting constant
 - → Wider range of UE, than in CDF

Cross-check with event shape variable

Event shape variable: spherocity

Simple 2-component model

Isotrope: flat low p_T distribution

- Jet: flat high p_T distribution

Event shape variable: spherocity

Simple 2-component model

Isotrope: flat low p_T distribution

Event shape variable: spherocity

Simple 2-component model

Spherosity definition

Isotrope: flat low p_⊤ distribution

→ Event selection based on spherocity classes is available in ALICE

Case II: Spherocity vs. Tsallis termometer

Spherocity relative to the MB defines wider UE

Case II: Sliding angle

→ Wider range of UE [40,140], than in CDF [60,120]

Case II: Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE
- Tsallis-thermometer presents the same

G.G. Barnafoldi: ELTE ElmFiz Seminar 2021

Case II: Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE
- Tsallis-thermometer presents the same

→ Wider range of UE [40,140], than in CDF [60,120]

Case II: Parameters in spherocity classes

 PYTHIA spectra with sliding angle in S₀ classes

 The more jetty the event, the angular variation is stronger.

Minimal activity (lowest q & T values are in the isotropic case.

 $\Delta \phi$ (rad.)

→ Isotropic event are closer to UE, activity is more than MB

Isotropic ($S_0 \rightarrow 1$)

 $\Delta \phi$ (rad.)

Conclusions

Could we understand UE?

- Not yet, but getting closer by quantifying them
 - → Model UE: PYTHIA (CR, MPI), HIJING (minijet)
 - → UE properties has been charaterized
 - → Tsallis-Pareto fits well in narrow slices

To take away...

- Tsallis-thermometer present wider UE
 In degrees CDF: [60,120] → [40,140]
- Event shape classification support the model

Conclusions

Could we understand UE?

- Not yet, but getting closer by quantifying them
 - → Model UE: PYTHIA (CR, MPI), HIJING (minijet)
 - → UE properties has been charaterized
 - → Tsallis-Pareto fits well in narrow slices

To take away...

- Tsallis-thermometer present wider UE
 In degrees CDF: [60,120] → [40,140]
- Event shape classification support the model

→ Next stage can be in a more complex system

BACKUP

Relative spherocity/MB Case I and II

Case I: Parameters vs spherocity

Spherocity model with multiplicity

Thermodynamical consistency?

Thermodynamical consistency: fulfilled up to a high degree

$$P = g \int \frac{d^3p}{(2\pi)^3} Tf,$$

$$N = nV = gV \int \frac{d^3p}{(2\pi)^3} f^q,$$

$$s = g \int \frac{d^3p}{(2\pi)^3} \left[\frac{E-\mu}{T} f^q + f \right],$$

$$\varepsilon = g \int \frac{d^3p}{(2\pi)^3} Ef$$

Compare EoS to data: Lattice QCD (parton) & Biró-Jakovác parton-hadron

G.G. Barnafoldi: ELTE ElmFiz Seminar 2021