Understanding the Underlying Event

G.G. Barnaföldi in collaboration with A.N. Mishra, G. Paic, and G. Bíró

Support: Hungarian OTKA grants, NK123815, K135515 Wigner GPU Laboratory Ref: arXiv:2108.13938

Outline

1) Earlier studies

- What is UE? Why is this important for in HEP?
\rightarrow theory, experiment, measures

2) New developments on UE

- Angular properties measures
\rightarrow multiplicity, p_{T} spectra, parameter derivatives
\rightarrow Tsallis thermometer

3) Comparison to event shape variable

- Spherocity measures and cross check
\rightarrow Conclusions: Extended UE definition

Anatomy of a proton-proton event

So what Uderlying Event is?

- Theoretical point:

- Mainly non-perturbative QCD effect
\rightarrow Initial \& final state radiation
\rightarrow Multiple parton interaction
\rightarrow Color Reconnection (CR)
\rightarrow intrinsic k_{T}
\rightarrow Hadronization

So what Uderlying Event is?

- Theoretical point:

- Mainly non-perturbative QCD effect
\rightarrow Initial \& final state radiation
\rightarrow Multiple parton interaction
\rightarrow Color Reconnection (CR)
\rightarrow intrinsic k_{T}
\rightarrow Hadronization
- Experimental point

- Pedestal-like effects
\rightarrow Activity in the event over MB
\rightarrow Beam remnants (pile up)
\rightarrow Trigger bias (jet criterion)

Earlier studies, motivation

Geometrical structure of an event

Geometrical structure of an event

How to separate jet \& UE?

- Jet finding \& elimination:
- Surrounding Band (SB method), Find a jet, THEN define SBs
- IF SB_{1} and SB_{2} are equal, THEN eliminate the jet
\rightarrow expensive (high statistics)
\rightarrow sensitive to cuts
- Correlation \& background
- Traditional method by CDF
\rightarrow burte force
\rightarrow geometry info only

CDF UE
SB-based UE

How to separate jet \& UE?

- Jet finding \& elimination:
- Surrounding Band (SB method), Find a jet, THEN define SBs
- IF SB_{1} and SB_{2} are equal, THEN eliminate the jet
\rightarrow expensive (high statistics)
\rightarrow sensitive to cuts
- Correlation \& background
- Traditional method by CDF
\rightarrow burte force
\rightarrow geometry info only

How to quantify \& compare events?

- Transverse spherocity:

$$
S_{0}=\frac{\pi^{2}}{4}\left(\frac{\sum_{i}\left|{\overrightarrow{p_{\mathrm{T}}^{i}}} \times \hat{\mathbf{n}}\right|}{\sum_{i} p_{\mathrm{T}_{i}}}\right)^{2}
$$

- Thrust:

$$
T_{\min } \equiv \frac{\sum_{i}\left|\vec{p}_{\mathrm{T}, i} \cdot \hat{\boldsymbol{n}}_{\boldsymbol{m}}\right|}{\sum_{i} p_{\mathrm{T}, i}}
$$

\rightarrow NO need for jet fin

\rightarrow Momentum \& geometry infos

How to quantify \& compare events?

- Precise spectra description

- from low- to high- p_{T}

$$
f\left(m_{T}\right)=A \cdot\left[1+\frac{q-1}{T_{s}}\left(m_{T}-m\right)\right]^{-\frac{1}{q-1}}
$$

- in multiplicity classes (pp, pA, AA)

$$
\left.\frac{\mathrm{d} \mathrm{~N}_{c h}}{\mathrm{dy}}\right|_{u=0}=2 \pi A T_{s}\left[\frac{(2-q) m^{2}+2 m T_{s}+2 T_{s}^{2}}{(2-q)(3-2 q)}\right] \times\left[1+\frac{q-1}{T_{s}} m\right]^{-\frac{1}{q-1}}
$$

- With PID:

$$
\pi^{ \pm}, K^{ \pm}, K_{s}^{0}, K^{* 0}, p(\bar{p}), \Phi, \Lambda, \Xi^{ \pm}, \Sigma^{ \pm}, \Xi^{0}, \Omega
$$

- Wide range:

	ρP	$P A$	$A A$
CM energy (GeV)	7000,13000	5020	$130-5020$
Multiplicity range	$2.2-25.7$	$4.3-45$	$13.4-2047$

How to quantify \& compare events?

- QCD-inherited scaling properties

$$
f\left(m_{T}\right)=A \cdot\left[1+\frac{q-1}{T_{s}}\left(m_{T}-m\right)\right]^{-\frac{1}{q-1}}
$$

- Parameter scaling with $\sqrt{ } \mathrm{s}$ \& multiplicity

$$
\begin{aligned}
& \mathrm{A}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=A_{0}+A_{1} \ln \frac{\sqrt{s_{N N}}}{m}+A_{2}\left\langle N_{c h} / \eta\right\rangle \\
& \mathrm{T}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=T_{0}+T_{1} \ln \frac{\sqrt{s_{N N}}}{m}+T_{2} \ln \ln \left\langle N_{c h} / \eta\right\rangle, \\
& \mathrm{q}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=q_{0}+q_{1} \ln \frac{\sqrt{s_{S N}}}{m}+q_{2} \ln \ln \left\langle N_{c h} / \eta\right\rangle,
\end{aligned}
$$

How to quantify \& compare events?

- QCD-inherited scaling properties

$$
f\left(m_{T}\right)=A \cdot\left[1+\frac{\frac{q-1}{T_{\mathrm{s}}}}{T_{T}}\left(m_{T}-m\right)\right]^{\frac{-\frac{1}{q-1}}{}}
$$

- Parameter scaling with $\sqrt{ } \mathrm{s}$ \& multiplicity

$$
\begin{aligned}
& \mathrm{A}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=A_{0}+A_{1} \ln \frac{\sqrt{s_{N N}}}{m}+A_{2}\left\langle N_{c h} / \eta\right\rangle \\
& \mathrm{T}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=T_{0}+T_{1} \ln \frac{\sqrt{ } s_{N N}}{m}+T_{2} \ln \ln \left\langle N_{c h} / \eta\right\rangle \\
& \mathrm{q}\left(\sqrt{s_{N N}},\left\langle N_{c h} / \eta\right\rangle, m\right)=q_{0}+q_{1} \ln \frac{\sqrt{ } s_{N N}}{m}+q_{2} \ln \ln \left\langle N_{c h} / \eta\right\rangle,
\end{aligned}
$$

- Thermodynamical consistency

$$
\begin{aligned}
& \mathrm{P}=\mathrm{g} \int \frac{d^{3} p}{(2 \pi)^{3}} T f, \quad \mathrm{~N}=\mathrm{nV}=\mathrm{gV} \int \frac{d^{3} p}{(2 \pi)^{3}} f^{q} \\
& \mathrm{~s}=\mathrm{g} \int \frac{d^{3} p}{(2 \pi)^{3}}\left[\frac{E-\mu}{T} f^{q}+f\right], \varepsilon=g \int \frac{d^{3} p}{(2 \pi)^{3}} E f
\end{aligned}
$$

New development to understand UE

Angular structure of an event

Standard CDF definition

Angular structure of an event

Standard CDF definition

Case I: Opening angle

Angular structure of an event

Standard CDF definition

Case I: Opening angle

Case II : Sliding angle

Angular structure of an event

- Case I: Opening angle
- We open $\Delta \varphi$ angle in steps of 20°. The binning starts from -10° to 10° and the last bin covers full azimuthal space i.e. -180° to 180° (MB). Case I is useful to investigate the evolution of the thermodynamical observables of the system.
- Case II: sliding angle
- We make slices of the $\Delta \varphi$ of size 20°. In this case, the results for the first bin 0 to 20°. are reported in two ways: including and excluding the leading particle in the result. Case II is a tool for exploring the geometrical structure of the Underlying Event.

Case I: Opening angle

Case II : Sliding angle

The simulated data

- PYTHIA_v8240 Monash 2013 tune

- 1 billion non-diffractive collisions of pp
- C.m. energy: $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$
- Includes $2 \rightarrow 2$ hard scattering process, followed by initial and final state parton showering, multiparton interactions, and the final hadronization process.
- The events having at least three primary charged particle with transverse
- Min. momentum: $p_{T}>0.15 \mathrm{GeV} / \mathrm{c}$

- Pseudorapidity: $|n|<0.8$
- UE: Color Reconnection (CR, Multiple Parton Interaction (MPI)

Case I: Opening angle "Pacman"

Case I: Opening angle

Case I: Opening angle "Pacman"

Case I: Opening angle

Case I: Multiplicity/MB

- PYTHIA multiplicity with opening angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- More multiplicity in the NS
- Getting flat in NS+TS
- NS+TS+AS are mainly flat as reaching MB

Case I: Opening angle

Case I: Multiplicity/MB

- PYTHIA multiplicity with opening angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- More multiplicity in the NS
- Getting flat in NS+TS
- NS+TS+AS are mainly flat as reaching MB

Case I: Opening angle

Case I: p_{T} spectrum

- PYTHIA spectra with opening angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- Low p_{T} varies (T)
- High p_{T} is constant (q)
- Full opening is MB

Case I: p_{T} spectrum

- PYTHIA spectra with opening angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- Low p_{T} varies (T)
- High p_{T} is constant (q)
- Full opening is MB

Case I: Tsallis fit parameters

- PYTHIA spectra with

 opening angle- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations (red line)
- Opening the angle \rightarrow constant T, lowest at MB
- Opening the angle \rightarrow constant q
- Multiplicity ~ A
- Full opening is MB

Case I: derivatives of the parameters

- PYTHIA spectra parameter derivatives with opening angle
- PYTHIAs model UE: CR \& MPI
- Opening the angle \rightarrow constant T \& q

$$
\frac{\delta T_{s}}{\delta(\Delta \phi)} \rightarrow 0 \quad \& \quad \frac{\delta q}{\delta(\Delta \phi)} \rightarrow 0
$$

- No change beyond NS
- Multiplicity ~ A
- Full opening is MB

Case I: Opening angle

Case II: Sliding angle "cake slices"

Case II : Sliding angle

Case II: Sliding angle "cake slices"

Case II : Sliding angle

Case II: Multiplicity/MB

- PYTHIA multiplicity with sliding angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- More multiplicity az NS
- TS \& AS are mainly flat
- With leading particle deviation is increased

Case II : Sliding angle

Case II: Multiplicity/MB

- PYTHIA multiplicity with sliding angle
- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- More multiplicity az NS
- TS \& AS are mainly flat
- With leading particle deviation is increased

Case II : Sliding angle

Case II: p_{T} spectrum

- PYTHIA spectra with sliding angle

- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- Low P_{T} is constant (T)
- High p_{T} varies (q)
- NS/AS are similar
- Need to consider w/o leading particle

Case II : Sliding angle

Case II: p_{T} spectrum

- PYTHIA spectra with sliding angle

- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations
- Low p_{T} is constant (T)
- High p_{T} varies (q)
- NS/AS are similar
- Need to consider w/o leading particle

Case II: Tsallis fit parameters

- PYTHIA spectra with

sliding angle

- PYTHIAs model UE: CR \& MPI
- Good fits with the parametrizations (red line)
- NS \rightarrow highest T
- NS/AS \rightarrow highest q
- TS \rightarrow constant q, T
- Multiplicity ~A

Case II: derivatives of the parameters

- PYTHIA spectra parameter derivatives with sliding angle
- PYTHIAs model UE: CR \& MPI
- TS (+AS) \rightarrow constant T \& q

$$
\begin{array}{lll}
\frac{\delta T_{s}}{\delta(\Delta \phi)} \neq 0 & \& \frac{\delta q}{\delta(\Delta \phi)} \neq 0 & \\
(\text { for NS \& AS) } \\
\frac{\delta T_{s}}{\delta(\Delta \phi)} \approx 0 \quad \& \frac{\delta q}{\delta(\Delta \phi)} \approx 0 & \text { (for TS) }
\end{array}
$$

- NS \rightarrow highest T
- NS/AS \rightarrow highest q
- Multiplicity ~A

Case II : Sliding angle

On the Tsallis-thermometer

- Case I: opening angle
- Need UE in PYTHIA \rightarrow CR \& MPI
- NS \rightarrow highest T, lowest q
- TS/AS \rightarrow constant q, lowering T
- MB \rightarrow constant q, lowest T

On the Tsallis-thermometer

- Case I: opening angle
- Need UE in PYTHIA \rightarrow CR \& MPI
- NS \rightarrow highest T, lowest q
- TS/AS \rightarrow constant q, lowering T
- MB \rightarrow constant q, lowest T
- Case II: sliding angle
- Need UE in PYTHIA \rightarrow CR \& MPI
- NS (with leading) is fully different highest T \& highest q
- Beyond NS T is getting constant
 \rightarrow Wider range of UE, than in CDF

Cross-check with event shape variable

Event shape variable: spherocity

Simple 2-component model

- Isotrope: flat low p_{T} distribution
- Jet: flat high p_{T} distribution

Event shape variable: spherocity

Simple 2-component model

- Isotrope: flat low p_{T} distribution
- Jet: flat high p_{T} distribution

Event shape variable: spherocity

Simple 2-component model

- Isotrope: flat low p_{T} distribution
- Jet: flat high p_{T} distribution

Spherosity definition

$$
S_{0}=\frac{\pi^{2}}{4}\left(\frac{\Sigma_{i}\left|\vec{p}_{T_{i}} \times \hat{n}\right|}{\Sigma_{i} p_{T_{i}}}\right)^{2}
$$

\rightarrow Event selection based on spherocity classes is available in ALICE

Case II: Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE

Case II : Sliding angle

\rightarrow Wider range of UE [40,140], than in CDF [60,120]

Case II: Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE
- Tsallis-thermometer presents the same

Case II: Spherocity vs. Tsallis termometer

- Spherocity relative to the MB defines wider UE
- Tsallis-thermometer presents the same

\rightarrow Wider range of UE [40,140], than in CDF [60,120]

Case II: Parameters in spherocity classes

- PYTHIA spectra with

 sliding angle in $\mathbf{S}_{\mathbf{0}}$ classes- The more jetty the event, the angular variation is stronger.
- Minimal activity (lowest q \& T values are in the isotropic case.

$\Delta \phi$ (rad.)

\rightarrow Isotropic event are closer to UE, activity is more than MB

Conclusions

- Could we understand UE?

- Not yet, but getting closer by quantifying them \rightarrow Model UE: PYTHIA (CR, MPI), HIJING (minijet)
\rightarrow UE properties has been charaterized
\rightarrow Tsallis-Pareto fits well in narrow slices
- To take away...
- Tsallis-thermometer present wider UE In degrees CDF: $[60,120] \rightarrow[40,140]$
- Event shape classification support the model

Conclusions

- Could we understand UE?
- Not yet, but getting closer by quantifying them \rightarrow Model UE: PYTHIA (CR, MPI), HIJING (minijet)
\rightarrow UE properties has been charaterized
\rightarrow Tsallis-Pareto fits well in narrow slices
- To take away...
- Tsallis-thermometer present wider UE In degrees CDF: $[60,120] \rightarrow[40,140]$
- Event shape classification support the model

\rightarrow Next stage can be in a more complex system

BACKUP

Relative spherocity/MB Case I and II

(a) Case I

(b) Case II

Case I: Parameters vs spherocity

Spherocity model with multiplicity

Thermodynamical consistency?

Thermodynamical consistency: fulfilled up to a high degree

$$
\begin{aligned}
\mathrm{P} & =\mathrm{g} \int \frac{d^{3} p}{(2 \pi)^{3}} T f \\
\mathrm{~N} & =\mathrm{nV}=\mathrm{gV} \int \frac{d^{3} p}{(2 \pi)^{3}} f^{q}, \\
\mathrm{~s} & =\mathrm{g} \int \frac{d^{3} p}{(2 \pi)^{3}}\left[\frac{E-\mu}{T} f^{q}+f\right], \\
\varepsilon & =g \int \frac{d^{3} p}{(2 \pi)^{3}} E f
\end{aligned}
$$

Compare EoS to data: Lattice QCD (parton) \& Biró-Jakovác parton-hadron

G.G. Barnafoldi: ELTE ElmFiz Seminar 2021

