HIJING++

Speaker: Gergely Gábor Barnaföldi, Wigner RCP of the H.A.S.

Group: GGB, **G. Bíró**, Sz.M. Harangozó, W.T. Deng, M. Gyulassy, G.Y. Ma, P. Lévai, **G. Papp**, X.N. Wang, B.W. Zhang

ALICE PWG-MM 2019, CERN, 27th March 2019

HIJING++

a status report as of yesterday

Speaker: Gergely Gábor Barnaföldi, Wigner RCP of the H.A.S.

Group: GGB, **G. Bíró**, Sz.M. Harangozó, W.T. Deng, M. Gyulassy, G.Y. Ma, P. Lévai, **G. Papp**, X.N. Wang, B.W. Zhang

ALICE PWG-MM 2019, CERN, 27th March 2019

Outline

- Motivation for HIJING++
- Technical details of the HIJING++
 - The structure of the program
 - Simulation framework & new features
- New physics & tests
 - Code validation in proton-proton collisions
 - Adding RIVET framework
 - Fine-tuning with PROFESSOR
- Outlook...

MOTIVATION

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

A QUESTION How long time does an event 'cost'?

A QUESTION How long time does an event 'cost'?

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

A QUESTION How long time does an event 'cost'?

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

HI data from the Large Hadron Collider

• LHC upgrades & theories required more and faster HI simulations

LHC / HL-LHC Plan

150 fb⁻¹

30 fb⁻¹

300 fb⁻¹

High Luminosity

3000 fb⁻¹

luminositv

HIJING++

(C++ based HIJING version 3.1 with parallel opportunities)

The HIJING++

HIJING(Heavy-Ion Jet INteraction Generator)

Bagua (eight simbols)

fundamental principles of reality

adjoint representation 8 of SU(3)

E PWG-MM, CERN 2019

The HIJING++

HIJING(Heavy-Ion Jet INteraction Generator)

易經

Bagua (eight simbols)

fundamental principles of reality

adjoint representation 8 of SU(3)

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

The HIJING++

- is a framework, not a black box.
- ... is not a direct port of the old FORTRAN code.
- ... is a direct port of the old FORTRAN code after all (regarding the physics).
- ...is not wrapper for Pythia8.
- ...is not published (yet).

Program Flow – in general

• Pair-by-pair nucleon-nucleon events

• Multiple soft gluon exchanges between valence- and di-quarks

• String hadronization according to Lund fragmentation scheme

Program Flow – in general

• Pair-by-pair nucleon-nucleon events

• Multiple soft gluon exchanges between valence- and di-quarks

- String hadronization according to Lund fragmentation scheme
- HIJING has another feature: MiniJets

• Two component model jet+soft $p_T > p_0$

• Jet cross section:
$$\sigma_{jet} = \int_{p_0^2}^{s/4} dp_T^2 dy_1 dy_2 \frac{1}{2} \frac{d\sigma_{jet}}{dp_T^2 dy_1 dy_2},$$

 $\frac{d\sigma_{jet}}{dp_T^2 dy_1 dy_2} = K \sum_{a,b} x_1 f_a(x_1, p_T^2) x_2 f_b(x_2, p_T^2) \frac{d\sigma^{ab}(\hat{s}, \hat{t}, \hat{u})}{d\hat{t}}$
• Eikonal formalism: $\sigma_{el} = \pi \int_0^\infty db^2 \left[1 - e^{\chi(b,s)} \right]^2,$
 $\sigma_{in} = \pi \int_0^\infty db^2 \left[1 - e^{\chi(b,s)} \right],$
 $\sigma_{tot} = 2\pi \int_0^\infty db^2 \left[1 - e^{\chi(b,s)} \right],$
 $\sigma_{tot} = 2\pi \int_0^\infty db^2 \left[1 - e^{\chi(b,s)} \right],$

- The two-components here:
- $\sigma_0 = \pi \int_0^\infty db^2 \left[1 e^{-2\chi_s(b,s)} \right] e^{-2\chi_h(b,s)},$ $\sigma_j = \pi \int_0^\infty db^2 \frac{[2\chi_h(b,s)]^j}{j!} e^{-2\chi_h(b,s)}.$

$$\frac{T_{AA}(b)\sigma_{jet}}{\pi R_A^2} \le \frac{p_0^2}{\pi}$$

• The two-components here:

$$\sigma_0 = \pi \int_0^\infty db^2 \left[1 - e^{-2\chi_s(b,s)} \right] e^{-2\chi_h(b,s)},$$

$$\sigma_j = \pi \int_0^\infty db^2 \frac{\left[2\chi_h(b,s) \right]^j}{j!} e^{-2\chi_h(b,s)}.$$

• HIJING 1.0
$$p_T > p_0$$
 $\underline{T_A}$

$$\frac{T_{AA}(b)\sigma_{jet}}{\pi R_A^2} \le \frac{p_0^2}{\pi}$$

• HIJING 2.0 $p_T > p_0$

$$p_{0} = 2.62 - 1.084 \log(\sqrt{s}) + 0.299 \log^{2}(\sqrt{s}) \\ -0.0292 \log^{3}(\sqrt{s}) + 0.00151 \log^{4}(\sqrt{s}), \quad (\sigma_{soft} = 55.316 - 4.1126 \log(\sqrt{s}) + 0.854 \log^{2}(\sqrt{s}) \\ -0.0307 \log^{3}(\sqrt{s}) + 0.00328 \log^{4}(\sqrt{s}), \quad (\sigma_{soft} = 1000 \text{ m})$$

• The two-components here:

$$\sigma_0 = \pi \int_0^\infty db^2 \left[1 - e^{-2\chi_s(b,s)} \right] e^{-2\chi_h(b,s)},$$

$$\sigma_j = \pi \int_0^\infty db^2 \frac{[2\chi_h(b,s)]^j}{j!} e^{-2\chi_h(b,s)}.$$

• HIJING 1.0
$$p_T > p_0$$

$$\frac{T_{AA}(b)\sigma_{jet}}{\pi R_A^2} \le \frac{p_0^2}{\pi}$$

• HIJING 2.0
$$p_T > p_0$$

$$p_{0} = 2.62 - 1.084 \log(\sqrt{s}) + 0.299 \log^{2}(\sqrt{s}) \\ -0.0292 \log^{3}(\sqrt{s}) + 0.00151 \log^{4}(\sqrt{s}), \quad (\sigma_{soft} = 55.316 - 4.1126 \log(\sqrt{s}) + 0.854 \log^{2}(\sqrt{s}) \\ -0.0307 \log^{3}(\sqrt{s}) + 0.00328 \log^{4}(\sqrt{s}), \quad (\sigma_{soft} = 1000 \text{ m})$$

• HIJING++: new parametrization

Vec4, Rndm, Hist, HijSettings, ParticleDataTable, ResonanceWidths...

Dependencies & External packages

• C++ v14+

Native multi-threading support of the C++

• LHAPDF 6

./configure -prefix=\$HOME/.../share/LHAPDF make all insert downloaded PDF library to \$HOME/.../share/LHAPDF optionally modify **pdfsets.index**, add set if needed export LD LIBRARY PATH=<library path>

• Pythia 8.x

./configure --with-lhapdf6-lib=\$HOME/.../lib \ --with-boost-lib=/usr/lib/x86_64-linux-gnu make –j4

THE

STANDAR

TEMPLATE

LIBRARY

- RIVET McNET2
- Data analysis using YODA

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

HIJING vs. HIJING++

	FORTRAN HIJING	HIJING++:
Precision	single	double
Pythia version	5.3*	8.2+**
PDF	GRV98lo	LHAPDF6.2+
Colour reconnection	×	1
Jet quenching	(✓)	(🗸)
Multithreading	×	1
Analysis interface	×	✓***
Module management****	×	1

*Was modified and hardwired into HIJING

** Default tune for HIJING++ is Monash, for that re-tuning of the parameters is needed

*** Includes: simple ascii, ROOT and HepMC2 (Rivet)

****In Backup

Performance tests with HIJING++

Fast computing = parallel computing

• Moore's law:

Every 2nd year the number of transistors (integrated circuits) are doubled in computing hardwares.

• Amdalh's law:

The theoretical speedup is given by the portion of parallelizable program, p, & number of processors, N, is:

Fast computing = parallel computing

• Moore's law:

Every 2nd year the number of transistors (integrated circuits) are doubled in computing hardwares.

The theoretical speedup is given by the portion of parallelizable program, p, & number of processors, N, is:

G.G. Barnafoldi: ALICE PWG-MM, CER

What is ongoing in a "mass" production of using MC in data analysis?

What is ongoing in a "mass" production of using MC in data analysis?

What is ongoing in a "mass" production of using MC in data analysis?

Multi-threading is not just running the same code multiple....

...but redistribute pool of events among multiple threads!

How much does a pp/pA/AA collision event cost in time?

How much does a pp/pA/AA collision event cost in time?

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

Runtime new vs. old

Single core run & 1 event:

 Old HIJING pp is faster, than PYTHIA8, but less physics

Runtime new vs. old

Single core run & 1 event:

- Old HIJING pp is faster, than PYTHIA8, but less physics
- HIJING++ pp is slower, than
 PYTHIA8: this is the effect of minijets + nuclear effects
- Init: is longer for HIJING++

• Runtime new vs. old

Single core run & 1 event:

- Old HIJING pp is faster, than PYTHIA8, but less physics
- HIJING++ pp is slower, than
 PYTHIA8: this is the effect of minijets + nuclear effects
- Init: is longer for HIJING++

Multi- event & multi-core run:

• Runtime new vs. old

Single core run & 1 event:

- Old HIJING pp is faster, than PYTHIA8, but less physics
- HIJING++ pp is slower, than
 PYTHIA8: this is the effect of minijets + nuclear effects
- Init: is longer for HIJING++

Multi- event & multi-core run:

- Due to the MPI support several times faster
- Better performance in HIC than in small systems (100 evts)

Physics tests with HIJING++

- Total ch. multiplicity
 - In HIJING 1.0 and 2.0 this has been changed a lot at LHC

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

- (Pseudo) rapidity
 - pp data 200 GeV 13 TeV
 - In this set PHOBOS & ALICE
 - Perfect agreement up to 5-10% in wide pseudo-rapidity range.

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

- (Pseudo) rapidity
 - pp data 200 GeV vs. 7 TeV
 - PYTHIA 8.235 (Monash) vs.
 HIJING++
 - Change in the trends
 @ 200GeV HIJING++ > PYTHIA
 @ 7TeV PYTHIA > HIJING++
 - At 200 GeV curves are less paralle especially around mid-rapidity.

- (Pseudo) rapidity
 - pp data 900 GeV vs. 7 TeV
 - HIJING 2.553 vs. HIJING++
 - Change in the trends
 @ 900GeV HIJING++ = HIJING
 @ 7TeV HIJING > HIJING-
 - Differences are stronger at high energies and higher pseudorapi

- Charged hadron spectra
 - pp data 900 GeV 13 TeV
 In this set ALICE data
 - Perfect agreement up to 50% in wide transverse momentum and center of mass energy range.

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

- Charged hadron spectra
 - pp & pA data dAu at 200 GeV and pPb 5.02 TeV
 - In this set STAR & ALICE data
 - Perfect agreement up to 50% in wide transverse momentum and center of mass energy range.

- Identified hadron spectra
 - pp data at 200 GeV and 2.76 TeV
 - In this set STAR & ALICE data
 - Perfect agreement up to 50% in wide transverse momentum and center of mass energy range.
 - High-pT proton production has to be improved.

• Nuclear Modification

$$R_{pPb} = rac{d^2 N_{pPb}/d\eta dp_T}{\langle N_{bin} \rangle d^2 N_{pp}/d\eta dp_T}$$

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

What is the next ???

HIJING++ with fine tuning

- Fine-tuning: optimizing numerical parameters (~10) for an initial, general purpose "tune" (like Monash 2013 for PYTHIA)
- HijAnalysis interface: different data structures for convenient usage

• The general steps of tuning:

HIJING++ with fine tuning

- Iterative process
 - \rightarrow finding the most general parametrization
 - The input of PROFESSOR is the YODA format
 - The goal is to find the optimal set for each possible setup for any HI
 - In principle, many dataset available in the HepData database can be used

HIJING++ with fine tuning

- Iterative process
 - \rightarrow finding the most general parametrization
 - The input of PROFESSOR is the YODA format
 - The goal is to find the optimal set for each possible setup for any HI
 - In principle, many dataset available in the HepData database can be used

 \rightarrow Result of tuning may differ a lot \cdot

Test & tunes within RIVET framework

Predictions for ALICE pp collisions at LHC energies

Test & tunes within RIVET framework

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

Test & tunes within RIVET framework

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

In a real physics analysis

• Z Varga, R Vértesi, GGB: Adv. In HEP 2019 6731362

Modification of Jet Structure in High-Multiplicity pp Collisions due to Multi-parton Interactions and Observing a Multiplicity-Independent Characteristic Jet Size

G.G. Barnafoldi: ALICE PWG-MM, CERN 2019

In a real physics analysis

• Z Varga, R Vértesi, GGB: Adv. In HEP 2019 6731362

Modification of Jet Structure in High-Multiplicity pp Collisions due to Multi-parton Interactions and Observing a Multiplicity-Independent Characteristic Jet Size

ρ(r)

 $\rho(r) = \frac{1}{\delta r} \frac{1}{p_{\mathrm{T}}^{jet}} \sum_{r_a < r_i < r_b} p_{\mathrm{T}}^i$

Summary

- HIJING++
 - Coding from FORTRAN \rightarrow C++ has been done
 - One more step HijCore & HijManager were introduced
 - Performance (parallel) tests are ongoing and promising
- First PHYSICS
 - Physics tests has been started
 - Comparison to data is ongoing: RIVET & YODA support is available
 - Tunes are running, and using PROFESSOR
 - Documentation, documentation, documentation....
- Next
 - Step-by-step reconsidering of nuclear effect (shadowing with Q², jet quenching)

BACKUP

Stay tuned... (web page is ready)

核易经 Hijing++ RC 3.0-1 A Heavy Ion Jet INteraction Generator, C++ version							
Home Installation Downloads	Documentation Classes Files List of example mains						
Hijing++ Installation Downloads	Installation						
Downloads Documentation Examples Glossary Update history Bibliography Example results > Classes > Files > List of example mains	Introduction These are the setup instructions. Prerequisites • git • cmake (min. v3.2) • LHAPDF6 (v6.2.0 or newer) • Pythia8 (v8219 or newer) • c++ compiler with c++14 support (gcc 5 or later) LHAPDF6						
	wget http://www.hepforge.org/archive/lhapdf/LHAPDF-6.X.Y.tar.gz tar -xvf LHAPDF-6.X.Y.tar.gz cd LHAPDF-6.X.Y.tar.gz cd LHAPDF-6.X.Y.tar.gz is udo make install Install (nuclear) pdf sets Ine pdf set GRV98/o is included in the downloaded package. It is mainly used during the development, since it is an unvalidated, "unofficial" set. However, if you wist 1. copy the GRV98/o folder (you can found it in misc) into /path/to/install/LHAPDF6/share/LHAPDF 2. insert into the file pdf sets .index at the correct line number (i.e. between 80000 and 80111) the following: 80060 GRV98/o 7: wed-i/80000\ METAv10LHC\ 2/a 80060 GRV98/o 1'/path/to/install/LHAPDF6/share/LHAPDF/pdfsets.index If you wish to use other npdf sets, visit http://lhapdf.hepforge.org/pdfsets.html and repeat the first step. Pythia8 Download and install the latest version from the official webpage:						

Documentation is ongoing...

Home				
Last edited by Gábor Bíró about 20 hours ago	Hijing++ v3.1.X			
Welcome to HijWiki!	The following environment variables need to be set:			
For install, visit the install instructions. For the tunable parameters, go to the index page. Example mains:	export PYTHIAN="/path/to/PythiaB" export PYTHIASDATA="/path/to/PythiaB/shar=/PythiaB/xmldoc" export LHATUF0="/path/to/LHAPDF0" Clone the project from master branch: git clone ssh://gitegitlab.kfk1.hu:2222/bir0.gabor/Hijing3.git			
main01: short description main02: short description main03: short description main04: short description main04: short description	cd Hijing3 && mkdir build && cd build cmake/ makejN If cmake didn't find something, add the path in flag, e.g.	Home Last edited by Gábor Bíró about 20 hours ago	ndex of tunable parame	eters
mainUS: short description	-DLHAPDF6=/path/to/lnapdf6 -DPYTHIA8=/path/to/pythia8	Welcome to HijWiki!	Hijing HijModules	
UpdateHistory Bibliography	Further optional flags: -DwITH ROOT-[ON]OFF] (default: ON) -DWITH_FASTJET=[ON]OFF] (default: OFF) -DBUITD_FXAMPLES-IONIOFF] (default: ON)	For the tunable parameters, go to the <u>index page</u> .	Threads BeamRemnants	Parameters parm Hijing:MinInvMassExStr (Default: 1.5, Min: 0.0, Max: 1000000.0)
Version 3.1.1 last updated on 2018.03.12.	-DMULTITHREAD-[ON]OFF] (default: ON)	main01: short description main02: short description	Glossary	Minimum value for the invariant mass of the excited string system in a hadron hadron inte parm Hijing:InvMassCut (Default: 3.0, Min: 0.0, Max: 1000000.0)
		main03: short description main04: short description main05: short description		Invariant mass cut-off for the dipole radiation of a string system below which soft gluon re parm Hijing:HardCut (Default: 0.0, Min: 0.0, Max: 1000000.0)
		About		Minimum pt transfer of hard or semihard scatterings, was HIPR1(8) befor.
		UpdateHistory		parm Hijing: InggerP1 (Default: -Z.25, Min: -10000.0, Max: 100000.0) Specifies the value of pT for each triggered hard scattering generated per event. If HIPR1(1
		Bibliography Version 3.1.1 last updated on 2018.03.12.		parm Hijing:MinJetPT (Default: 2.0, Min: 0.0, Max: 10000.0) minimum $p_{L}T$ of a jet which will interact with excited nuclear matter. When the $p_{L}T$ of a jet

First calculations: pp & pPb

HIJING++ pPb comparison (y=0)

- Test: hadron spectra az 5.02 & 8 TeV
- HIJING++ to Theory (kTpQCD, AMPT)
 - PYTHIA8 on pp
 - AMPT pPb

First calculations: pp & pPb

HIJING++ pPb comparison (y=0)

- Test: hadron spectra az 5.02 & 8 TeV
- HIJING++ to Theory (kTpQCD, AMPT)
 - PYTHIA8 on pp
 - AMPT pPb
 - kTpQCD_v21 with HIJING & EPS09
- HIJING++ to LHC data:
 - ALICE data @ 5.02 TeV pp & pPb

HIJING++ pp & pPb comparison by R. Vogt: NPA 972 (2018) 18

- Prediction: hadron spectra 8 TeV
- HIJING++ to Theory at 8 TeV
 - PYTHIA8 on pp
 - EPS09NLO
 - AMPT on pPb
 - kTpQCD_v21 on pp & pPb
- Results:
 - Differences at pp level
 - Similar spectra in p. Barnafoldi: ALICE PWG-MM, CERN 2019

HIJING++ pp & pPb comparison by R. Vogt NPA 972 (2018) 18

- Prediction: hadron spectra 8 TeV
- HIJING++ to Theory at 8 TeV
 - PYTHIA8 on pp
 - EPS09NLO
 - AMPT on pPb
 - kTpQCD_v21 on pp & pPb
- Results:
 - Major differences for K & p

HIJING++ pp & pPb comparison by R. Vogt NPA 972 (2018) 18

- Prediction: rapidity distribution 8 TeV
- HIJING++ to Theory at 8 TeV
 - PYTHIA8 on pp
 - rcBK
 - bCGC
- Results:
 - Major deviance for PYTHIA8 at midrapidity is coming from minijets

HIJING++ pp & pPb comparison by R. Vogt NPA 972 (2018) 18

- Prediction:

$$R_{pA}(p_T) = \frac{dN_{pA}/dyd^2p_T}{\langle N_{\rm bin} \rangle dN_{pp}/dyd^2p_T}$$

- HIJING++ to Theory at 8 TeV
 - kTpQCD_v21 with EPS09 & HIJING
 - EPS09NLO
- Results:
 - Better agreement with EPS09
 - No relevant difference between π , K, p

First predictions: pPb \rightarrow heavy hadrons

HIJING++ pPb rapidity dependence

- Prediction at various rapidity:

$$R_{pA}(p_T) = \frac{dN_{pA}/dyd^2p_T}{\langle N_{\rm bin} \rangle dN_{pp}/dyd^2p_T}$$

- Results:
 - To the y>0 similar trends
 - On the y<0 yields increase with mass

