

Event-shape, multiplicity-, and energy-dependent production of (un)identified particles in pp collisions with ALICE at the LHC

Gyula Bencédi

Wigner RCP, Hungary UNAM/ICN, Mexico

on behalf of the ALICE Collaboration

15/05/2018

The work is supported by the Hungarian "OTKA" grant NKFIH K120660

Motivation

ALICE at the CERN LHC is optimized for heavy-ion physics

→ Also, important contributions to the LHC pp physics program
 → Provides baseline for the measurements of heavy ions

1) Studies of particle production at high energies in pp collisions aim

- to constrain fragmentation functions (Ref. Daniel de Florian *et. al*, Phys. Rev. **D 95**, 094019) in perturbative QCD calculations based on the factorization theorem
 → "hard" scattering regime
- to constrain *phenomenological (Monte Carlo) models* → "soft" scattering regime

Motivation

3

2) Understanding collective-like effects seen at 7 TeV: smooth evolution of yield ratios in p-Pb and Pb-Pb collisions

Study the **evolution** of particle production with the center-of-mass energy (**√s**) and **multiplicity** by measuring identified particle production

→ To disentangle the energy and multiplicity dependences, for a given multiplicity class, the p_{T} distributions are measured at new collision energies of 5.02 TeV and 13 TeV

Motivation

2) Understanding collective-like effects seen at 7 TeV : smooth evolution of yield ratios in p–Pb and Pb–Pb collisions

Study the **evolution** of particle production with the center-of-mass energy (**√s**) and **multiplicity** by measuring identified particle production

3) Using the observable *transverse spherocity*

- to **differentiate** between **soft** and **hard** scattering **domains** of particle production
- to **investigate** the **importance of jets** in high multiplicity pp collisions

The ALICE apparatus

ALICE Collaboration: Int. J. Mod. Phys. A 29 (2014) 1430044

Results I.

Transverse momentum (p_{τ}) spectra of (un)identified hadrons

as a function of *collision energy* and *charged-particle multiplicity*

Energy dependence of p_{τ} -spectra

1) Progressive hardening of the spectra with increasing \sqrt{s}

2) Ratios of spectra at different \sqrt{s} evidence the two different p_{T} ranges:

- soft regime ($p_T < 1 \text{ GeV}/c$): small increase with little or no p_T dependence
- hard regime (at high $p_{\rm T}$): very significant dependence on \sqrt{s}

Energy dependence of p_{T} -differential particle ratios

1) Kaon-to-pion ratios:

New:

Run 2

LHC

• No \sqrt{s} dependence observed within uncertainties

2) Proton-to-pion ratios:

- For $p_{T} < 10$ GeV/*c*: modest \sqrt{s} dependence is seen
- In the intermediate p_{τ} region the peak with increasing \sqrt{s} shifts towards higher p_{τ}
- For $p_{T} > 10 \text{ GeV}/c$: *no* evidence of evolution with \sqrt{s} within uncertainties

 $\rightarrow p_{T} > 1 \text{GeV/c:}$ the ratios exhibit a strong dependence on p_{T} (more pronounced towards higher multiplicities) 11

p_T spectra of **identified** hadrons as a function of New: LHC charged-particle multiplicity Run 2

ALICE

New: Multiplicity dependence of p_{T} -differential particle ratios *LHC Run 2 – 13 TeV*

Kaon-to-pion ratios:

- → No apparent modifications is observed in the reported multiplicity classes
- → Result is compatible with the observations reported at 7 TeV

Proton-to-pion ratios:

- → A characteristic depletion is observed at high multiplicity and at low p_T values
- → Enhancement at intermediate p_T
 => consistent with the presence
- of an expanding medium (radial-flow)
- → particle dynamics is similar to p-Pb and Pb-Pb systems

ALI-PREL-145926

Results II.

Yield dN/dy and average transverse momentum of identified hadrons

as a function of collision energy and charged-particle multiplicity

Integrated Hadron Yields at 7 TeV as a function of charged-particle multiplicity

- Smooth evolution across different collision systems
 - → hadrochemistry is dominantly driven by charged-particle multiplicity
- Soft particle production in pp collisions is similar to that in p-Pb and Pb-Pb collisions

New: LHC Run 2 – 13 TeV

Integrated hadron yields as a function of charged-particle multiplicity

16

Study the validity of multiplicity scaling at different collision energies

- Average $p_{_{\rm T}}$ for π , K and p indicates a **hardening** going from 7 to 13 TeV at comparable multiplicities

Similar trends are seen for (multi-)strange hadrons and for all charged hadrons at lower collision energies 17
 Scaling with multiplicity is not valid → similar observation for (multi-)strange hadrons

Results III.

(Un)identified particle production

as a function of transverse spherocity (S_0)

in high-multiplicity pp collisions at 13 TeV

Investigations of particle production using event shapes

- *Aim:* Study the importance of jets in high multiplicity pp collisions
- **Tool:** Transverse spherocity (to isolate "jetty"-like and "isotropic" events associated with underlying event (UE) suppressed or enhanced activity)

By definition, transverse spherocity is sensitive to soft physics

$$S_0 \equiv \frac{\pi^2}{4} \min_{\widehat{\boldsymbol{n}}_s} \left(\frac{\sum_i^{N_{\rm ch}} |\vec{p}_{{\rm T},i} \times \widehat{\boldsymbol{n}}_s|}{\sum_i^{N_{\rm ch}} p_{{\rm T},i}} \right)^2$$

"Jetty": $S_0 = 0$, "Isotropic": $S_0 = 1$

- Collective effects evidenced in the soft QCD regime
 - → event shape observables are ideally suited to better distinguish the underlying physics of a pp collision
- For the studies of (un)identified particles, events are selected: with more than (2) 10 charged particles within |η/< 0.8 and p_T > 0.15 GeV/c
 - ightarrow to minimize sensitivity to particle loss

• For jetty events:

steeper rise, systematically larger $\langle p_T \rangle$ as compared to the 0 - 100% (S₀-unbiased) case \rightarrow expected from jet production

- For isotropic events: systematically lower < p_T > than the S_0 -unbiased case
- So-integrated results: consistent to measurements at lower collision energies
 - \rightarrow No apparent energy dependence observed

- **Model comparison:** S_0 -unbiased (0 100% S_0) •
 - \rightarrow PYTHIA and EPOS-LHC models describe well the data

(EPOS-LHC: small deviation at low N_{ch})

ALICE

New: Average p_{T} vs multiplicity and spherocity – **Comparison to models** *LHC – Run 2*

PYTHIA and EPOS LHC describe the <*p*_T> evolution moderately well (*minor deviations for EPOS at very low N*_{ch})

- PYTHIA overestimates <p_T> for all N_{ch} (the contribution of underlying event is significantly underestimated)
- EPOS LHC gives the best description (overestimate the rise of $< p_T > at$ low multiplicities, it agrees very well with the data for $N_{ch} > 15$) 21

- Only the 10% highest VOM multiplicity events are considered
 → 97% of the events have at least ten charged tracks
- 20% of events with the highest (lowest) measured $S_{\rm o}$

→ **isotropic**, $0.76 < S_0 < 1$ (**jetty**, $0 < S_0 < 0.46$)

→ *Isotropic events:* spectra are enhanced at low p_T (compared to S_0 -unbiased) and suppressed for p_T > 2.5 GeV/c for π and K

- \rightarrow Jetty events: spectra are suppressed at low p_{T} and enhanced at intermediate p_{T}
- → Crossing of "jetty" and "isotropic" spectra: increase towards larger p_T for heavier particles
 => mass-dependent spectral modifications

```
New:
LHC
Run 2
```

Identified particle ratios as a function of multiplicity and spherocity

Isotropic events:

Kaon-to-pion ratio: → consistent with those measured in the *S*_o-unbiased case

Proton-to-pion ratio:

- → apparent shift in *p*_T, similar to the multiplicity dependent modifications
- → collective-like effects can be further enhanced

Jetty events

Kaon-to-pion ratio:

- \rightarrow signatures of a suppression
- → species-dependent jet fragmentation

Proton-to-pion ratio:

→ suppression can be attributed to the production mechanisms of protons in jets


```
New:
LHC
Run 2
```

Comparison to models Particle ratios as a function of multiplicity and spherocity

Ratios to S_o unbiased (VOM class I – III)

Kaon-to-pion ratios (left)

 \rightarrow double ratios are well-described by both PYTHIA 8 and EPOS-LHC generators (only fragmentation)

Proton-to-pion ratios (right):

 \rightarrow PYTHIA 8: predicts the observed trends, but underestimates the magnitude of the modication (Similar to evolution of average p_{τ}

 \rightarrow deviation might originate from underestimated underlying event) → EPOS-LHC:

- => double ratio is described the best
- => absolute ratio: further tuning is needed

Summary

Light-flavor hadron production studied as a function of

- \sqrt{s} and charged-particle multiplicity N_{ch}
 - $\rightarrow \rho_{T}$ -spectra and particle ratios exhibit a clear evolution with N_{ch}

 $\rightarrow p_{T}$ -integrated hadron yields scales with N_{ch} across different \sqrt{s} and colliding systems: hadrochemistry is dominantly driven by multiplicity

 \rightarrow Average p_T grows with \sqrt{s} at similar N_{ch} : dynamics of particle production might be different at different \sqrt{s}

- \sqrt{s} and charged-particle multiplicity N_{ch} and transverse spherocity S_0

 \rightarrow Particle ratios: collective-like effects can be controlled with transverse spherocity

 \rightarrow Average p_{T} is larger (smaller) in jetty (isotropic) events hinting at different dynamics of particle production

Microscopic (Pythia 8, DIPSY) and macroscopic (EPOS-LHC) models describe several aspects of data; in most cases EPOS-LHC does a better job.

Thank you for your attention!

Gyula Bencedi (Wigner RCP, Hungary)

Backup slides

A Large Ion Collider Experiment (ALICE) at the LHC

| _{F0}

- ALICE at the LHC is optimized for heavy-ion physics
- ALICE aims to study the formation of the strongly interacting QCD matter, the Quark-Gluon Plasma (QGP) created in high energy heavy-ion collisions

Time evolution of the matter produced in heavy-ion collision

Thermal model:

- Particles in HI collisions are produced in apparent chemical equilibrium
- Description based on thermal-statistical models
 - Particle abundances $\propto \exp(-m/T_{ch})$ with T_{ch} being ~156 MeV

before collision

- Hot and dense system is created by colliding heavy ions (Pb ions)
 - high energy density (>> 1 GeV/fm³) over large volume (>> 1000 fm³)
- Transition from nuclear matter into deconfined phase at high *T*
- Collective expansion of the system
 → multiple interactions of partons
- Chemical freeze-out (*T*_{ch})
 - end of inelastic scatterings
- Kinetic freeze-out (*T*_{f0})

28

• end of elastic scatterings

Particle Identification in ALICE

ALIÇE

ALI-PERF-95942

ALI-PERF-112141

[1] ALICE-PUBLIC-2017-005. The ALICE definition of primary particles

Similarities among different colliding systems

31

 $Low-p_{T}: < 2 \text{ GeV/}c; Mid-p_{T}: 2 < p_{T} < 10 \text{ GeV/}c; High-p_{T}: > 10 \text{ GeV/}c$

Light flavor particle p_{T} -spectra in pp

Multiplicity dependence

 Events classified according to event activity measured in the backward/forward region (by "VOM" estimator), in order to avoid auto-correlation biases.

 $\sqrt{s} = 7 TeV$

• Charged-particle multiplicity measured at mid-rapidity for each event class

"V0M" multiplicity classes:

 $I \rightarrow dN/d\eta \approx 3.5 \times (dN/d\eta)_{INEL > 0}$ $X \rightarrow dN/d\eta \approx 0.4 \times (dN/d\eta)_{INEL > 0}$

Class name	Ι	II	III	IV	V
$\sigma/\sigma_{ m INEL>0}$	0-0.95%	0.95-4.7%	4.7-9.5%	9.5-14%	14-19%
$\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta angle$	21.3 ± 0.6	16.5 ± 0.5	13.5 ± 0.4	11.5 ± 0.3	10.1 ± 0.3
Class name	VI	VII	VIII	IX	Х
$\sigma/\sigma_{ m INEL>0}$	19-28%	28-38%	38-48%	48-68%	68-100%
$\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta angle$	8.45 ± 0.25	6.72 ± 0.21	5.40 ± 0.17	3.90 ± 0.14	2.26 ± 0.12

Light flavor particle *p*₊-spectra *in pp* $\sqrt{s} = 7 TeV$

Evolution of spectral shapes with multiplicity

ALICE

\sqrt{s} dependence : $\langle dN_{ch}/d\eta \rangle$

- $\langle dN_{ch}/d\eta \rangle$ follows a power law behavior as a function of \sqrt{s}
- Only modest change (factor of < 2) in ⟨dN_{ch}/dη⟩ over 1 order of magnitude increase in √s (0.9 TeV → 13 TeV)
- Evolution of hyperon-to-pion ratios are consistent with the increase observed in $\langle dN_{\rm ch}/d\eta\rangle$
- Is hadrochemistry dominantly driven by $\langle dN_{\rm ch}/d\eta \rangle$?

An event-multiplicity differential study is performed

- "VOM" estimator is used to slice in percentiles of multiplicity
- $\langle dN_{ch}/d\eta \rangle$ restricted to $|\eta| < 0.5$ represents the average number of charged primary particles at midrapidity

Particle production at high p_{T} : multiplicity dependence of the power-law exponent

• Low multiplicity:

→ plateau observed regardless of used multiplicity estimator and collision energy

High multiplicity: → mid-rapidity estimator: decreasing trend towards higher multiplicities

→ nonlinearity: similar result seen at lower energy and for identified particles

ALI-PREL-137044

ALI-PREL-137036

37

Multiplicity dependence: strange hadron production at different \sqrt{s}

Hadrochemistry is driven by multiplicity rather than \sqrt{s}

Multiplicity dependence: strange and multi-strange hadron production

- Significant enhancement of strange to non-strange hadron production is observed with increasing particle multiplicity in pp
- Similar behavior to that observed in p-Pb (both in terms of values and trend with multiplicity)
- *Similar values* reached *in high-multiplicity pp*, *p–Pb*, and *peripheral Pb–Pb* collisions (having at similar multiplicities)

Multiplicity dependence: Baryon to meson ratios

- **Baryon-to-meson ratios** (with same strangeness content) but different masses
 - No significant change with multiplicity
 - → Strangeness enhancement is neither due to the difference in the hadron masses nor due to baryon nature of the particle
- Monte Carlo comparison
 - DIPSY^[2] with color ropes describes qualitatively best the increase of strange particles, but fails to describe the p/pi ratio
 - EPOS describes the evolution qualitatively

[1] Nature Physics 13 (2017) 535-539; [2] DIPSY, C. Flensburg et al., JHEP08 (2011) 103; C. Bierlich et al., JHEP03 (2015) 148

[1] Nature Physics 13 (2017) 535-539; [2] DIPSY, C. Flensburg et al., JHEP08 (2011) 103; C. Bierlich et al., JHEP03 (2015) 148