# TSALLIS-THERMOMETER: A QGP INDICATOR FOR LARGE AND SMALL COLLISIONAL SYSTEMS

20TH ZIMÁNYI SCHOOL WINTER WORKSHOP ON HEAVY ION PHYSICS

#### GÁBOR <mark>BÍRÓ</mark>

2020 December 7-11

WIGNER RESEARCH CENTRE FOR PHYSICS EÖTVÖS LORÁND UNIVERSITY Collaborators:

#### GERGELY GÁBOR BARNAFÖLDI TAMÁS SÁNDOR BIRÓ

#### Talk based on:

G. Bíró, G.G. Barnaföldi, T.S. Biró, J. Phys. G, 47.10 (2020), 105002. Related publications:

G. Bíró, G.G. Barnaföldi, K. Ürmössy, T.S. Bíró, Á. Takács, Entropy, 19(3), (2017), 88 G. Bíró, G.G. Barnaföldi, T.S. Bíró, K. Shen, EPJ Web Conf., 171, (2018), 14008









Ratio of identified hadrons in small to large systems... ...but what is **Small**?







Ratio of identified hadrons in small to large systems... ...but what is **Small**?

Small systems can have large multiplicities too...







Ratio of identified hadrons in small to large systems... ...but what is **Small**?

Small systems can have large multiplicities too...

Where does the quark-gluon plasma start in **multiplicity**?







#### Non-extensive statistics - summary:



Entropy 16(12), (2014), 6497-651, Eur.Phys.J.A 55 (2019) 8, 126

#### Non-extensive statistics - summary:

q-entropy:

$$S_q = \frac{1}{q-1} \left( 1 - \sum_{i=1}^W p_i^q \right)$$

$$\lim_{q \to 1} S_q = S_{BG}$$



Entropy 16(12), (2014), 6497-651, Eur.Phys.J.A 55 (2019) 8, 126

#### Non-extensive statistics - summary:

q-entropy:

$$S_q = \frac{1}{q-1} \left( 1 - \sum_{i=1}^W p_i^q \right)$$
$$\lim_{a \to 1} S_q = S_{BG}$$

Thermodynamical consistency:

$$P = Ts + \mu n - \varepsilon$$

$$P = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} Tf \qquad \qquad s = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \left[ \frac{E - \mu}{T} f^q + f \right]$$
$$N = nV = gV \int \frac{\mathrm{d}^3 p}{(2\pi)^3} f^q \qquad \qquad \varepsilon = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} Ef^q$$



Entropy 16(12), (2014), 6497-651, Eur.Phys.J.A 55 (2019) 8, 126

#### Non-extensive statistics – summary:

q-entropy:

$$S_q = \frac{1}{q-1} \left( 1 - \sum_{i=1}^W p_i^q \right)$$
$$\lim_{a \to 1} S_q = S_{BG}$$

Thermodynamical consistency:

$$P = Ts + \mu n - \varepsilon$$
$$= g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} Tf \qquad \qquad s = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \left[ \frac{E - \mu}{T} f^q + f \right]$$

$$N = nV = gV \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} f^{q} \qquad \varepsilon = g \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} E f^{q}$$

Final size effects:

P

$$T = \frac{E}{\langle n \rangle} \qquad \qquad q = 1 - \frac{1}{\langle n \rangle} + \frac{\Delta n^2}{\langle n \rangle^2}$$
$$T = E \left[ \delta^2 - (q-1) \right] \qquad \qquad \frac{\Delta n^2}{\langle n \rangle^2} := \delta^2$$



Entropy 16(12), (2014), 6497-651, Eur.Phys.J.A 55 (2019) 8, 126

#### Non-extensive statistics - summary:

*q*-entropy:

$$S_q = \frac{1}{q-1} \left( 1 - \sum_{i=1}^W p_i^q \right)$$
$$\lim_{a \to 1} S_q = S_{BG}$$

Thermodynamical consistency:

$$P = Ts + \mu n - \varepsilon$$

$$P = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} Tf \qquad \qquad s = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \left[ \frac{E - \mu}{T} f^q + f \right]$$
$$N = nV = gV \int \frac{\mathrm{d}^3 p}{(2\pi)^3} f^q \qquad \qquad \varepsilon = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} Ef^q$$

Final size effects:

$$T = \frac{E}{\langle n \rangle} \qquad \qquad q = 1 - \frac{1}{\langle n \rangle} + \frac{\Delta n^2}{\langle n \rangle^2}$$
$$T = E \left[ \delta^2 - (q - 1) \right] \qquad \qquad \frac{\Delta n^2}{\langle n \rangle^2} := \delta^2$$



Entropy 16(12), (2014), 6497-651, Eur.Phys.J.A 55 (2019) 8, 126

## The **q** and **T** parameters can track down the size evolution!

#### Non-extensive statistics - summary:

*q*-entropy:

$$S_q = \frac{1}{q-1} \left( 1 - \sum_{i=1}^W p_i^q \right)$$
$$\lim_{a \to 1} S_q = S_{BG}$$

Thermodynamical consistency:

$$P = Ts + \mu n - \varepsilon$$

$$P = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} Tf \qquad \qquad s = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \left[ \frac{E - \mu}{T} f^q + \frac{1}{2\pi} f^q \right]$$
$$N = nV = gV \int \frac{\mathrm{d}^3 p}{(2\pi)^3} f^q \qquad \qquad \varepsilon = g \int \frac{\mathrm{d}^3 p}{(2\pi)^3} Ef^q$$

Final size effects:

$$T = \frac{E}{\langle n \rangle} \qquad \qquad q = 1 - \frac{1}{\langle n \rangle} + \frac{\Delta n^2}{\langle n \rangle^2}$$
$$T = E \left[ \delta^2 - (q - 1) \right] \qquad \qquad \frac{\Delta n^2}{\langle n \rangle^2} := \delta^2$$



Entropy 16(12), (2014), 6497-651, Eur.Phys.J.A 55 (2019) 8, 126

## The **q** and **T** parameters can track down the size evolution!

### Phenomenological approach:

Map the thermodynamically consistent non-extensive parameter space of the available experimental data and compare it with theoretical QCD calculations

- $\cdot$  11 identified hadron species: from  $\pi^\pm$  to  $\Omega$
- Various collision systems: proton-proton, proton-nucleus, nucleus-nucleus
- $\cdot$  Wide range of multiplicities:  $2.2 \leq \langle \mathrm{d}N_{ch}/\mathrm{d}\eta 
  angle \leq 2047$
- $\cdot$  Wide range of CM energies:  $130 \leq \sqrt{s_{NN}} \leq 13000$  GeV
- · More than 30 published experimental datasets



### Goal: calibrate the Tsallis-thermometer

#### RESULTS



#### **Parametrizations:**

$$\begin{split} A &= A_0 + A_1 \ln \frac{\sqrt{s_{NN}}}{m} + A_2 \left\langle \mathrm{d}N_{ch}/\mathrm{d}\eta \right\rangle \\ T &= T_0 + T_1 \ln \frac{\sqrt{s_{NN}}}{m} + T_2 \ln \ln \left\langle \mathrm{d}N_{ch}/\mathrm{d}\eta \right\rangle \\ q &= q_0 + q_1 \ln \frac{\sqrt{s_{NN}}}{m} + q_2 \ln \ln \left\langle \mathrm{d}N_{ch}/\mathrm{d}\eta \right\rangle \end{split}$$

1. The **A**, **q** and **T** parameters characterize the collision

2. Strong grouping:  $T_{eq} \approx 0.144$  GeV,  $q_{eq} \approx 1.156$ 

#### RESULTS

 $\langle v_t 
angle = rac{\langle u_t 
angle}{\sqrt{1 + \langle u_t 
angle^2}}$ 



1. The A, q and T parameters characterize the collision

2. Strong grouping:  $T_{eq} \approx 0.144$  GeV,  $q_{eq} \approx 1.156$ 

3. Test: results are comparable with experiments (Phys. Rev. C 83 (2011), 064903) 4 / 7

Thermodynamical consistency: 🗸

$$P = Ts + \mu n - \varepsilon$$

Comparison of the thermodynamical variables with theoretical calculations



Interpretation of the grouping phenomenon in the T - (q-1) parameter space:



$$P = Ts + \mu n - \varepsilon$$



Interpretation of the grouping phenomenon in the  $\,T$  - (q-1) parameter space:

1. Overlapping region with theoretical QCD calculations  $\rightarrow$  presence of hot QCD matter just before the hadronization?



$$P = Ts + \mu n - \varepsilon$$



Interpretation of the grouping phenomenon in the  $\,T$  - (q-1) parameter space:

- 1. Overlapping region with theoretical QCD calculations  $\rightarrow$  presence of hot QCD matter just before the hadronization?
- 2. Hadron spectra of colliding systems with T pprox 0.144 GeV and q pprox 1.156: originates from a previous quark-gluon plasma state



$$P = Ts + \mu n - \varepsilon$$



Interpretation of the grouping phenomenon in the  $\,T$  - (q-1) parameter space:

- 1. Overlapping region with theoretical QCD calculations  $\rightarrow$  presence of hot QCD matter just before the hadronization?
- 2. Hadron spectra of colliding systems with  $T \approx 0.144$  GeV and  $q \approx 1.156$ : originates from a previous **quark-gluon plasma** state
- 3. This QGP does certainly **not** follow an equilibrium Boltzmann Gibbs statistics



$$P = Ts + \mu n - \varepsilon$$



Interpretation of the grouping phenomenon in the T - (q-1) parameter space:

- 1. Overlapping region with theoretical QCD calculations  $\rightarrow$  presence of hot QCD matter just before the hadronization?
- 2. Hadron spectra of colliding systems with T pprox 0.144 GeV and q pprox 1.156: originates from a previous quark-gluon plasma state
- 3. This QGP does certainly not follow an equilibrium Boltzmann Gibbs statistics

With the **parametrizations:**  $\sqrt{s}$  and  $\langle dN_{ch}/d\eta \rangle$  regions:

 $\cdot \sqrt{s} \gtrsim 7000 \text{ GeV: } \langle \mathrm{d}N_{ch}/\mathrm{d}\eta \rangle \gtrsim 130$  $\cdot \sqrt{s} \gtrsim 13000 \text{ GeV: } \langle \mathrm{d}N_{ch}/\mathrm{d}\eta \rangle \gtrsim 90$ 

#### **SUMMARY**

- · Consistent non-extensive analysis of a **very large set** of experimental data
- $\cdot q 
  eq 1$  for all hadron spectra: dependency on the size of the collisional system through **multiplicity** fluctuations
- Various checks of the non-extensive framework
- Grouping of the **T** and **q** parameters, **comparison** with theoretical QCD calculations
- **Tsallis-thermometer:** final state hadrons may originate from a previously present strongly interacting QCD matter at event multiplicities as low as  $\langle dN_{ch}/d\eta \rangle \sim 100$

#### SUPPORT

The research is supported by: OTKA K120660, K123815, K135515, THOR COST CA15213, Hungarian-Chinese 12 CN-1-2012-0016, MOST 2014DFG02050, 2019-2.1.11-TÉT-2019-00050 TéT, Wigner HAS-OBOR-CCNU, ÚNKP-17-3.

## Thank you for your attention!

BACKUP

### **EXPERIMENTAL DATA**

| System, $\sqrt{s_{NN}}$ (GeV) | $\eta$ or $y$    | Hadron                      | Mult. classes                                                                            | $p_{T}$ range (GeV/ $c$ ) |                               |                  |                           |                         |                                           |
|-------------------------------|------------------|-----------------------------|------------------------------------------------------------------------------------------|---------------------------|-------------------------------|------------------|---------------------------|-------------------------|-------------------------------------------|
| AuAu, 130                     | $ \eta  < 0,35$  | $\pi^{\pm}$                 | 3, [21,3; 622]                                                                           | $[0,25;\ 2,2]$            | System, $\sqrt{s_{NN}}$ (GeV) | $\eta$ or $y$    | Hadron                    | Mult. classes           | $p_{T} \; {\rm range} \; ({\rm GeV}/{c})$ |
|                               |                  | $K^{\pm}$                   |                                                                                          | [0, 45; 1, 65]            | pPb, <b>5020</b>              | -0.5 <  y  < 0.0 | $\pi^{\pm}$               | 7, [4,3; 45]            | [0,1; 20,0]                               |
|                               |                  | $p(\bar{p})$                |                                                                                          | $[0,55;\ 3,42]$           |                               |                  | $\Sigma^{\pm}$            | 3.[7.1:35.6]            | [1.0; 6.0]                                |
| CuCu, <b>200</b>              | y  < 0.5         | K0                          | 5, [32; 175]                                                                             | [0,5; 9,0]                |                               |                  | Ξ±                        | 7 [4,3; 45]             | [0,6; 7,2]                                |
|                               |                  | Λ0                          |                                                                                          | $[0,5;\ 7,0]$             |                               |                  | $\Omega^{\pm}$            |                         | [0.8: 5.0]                                |
|                               |                  | $\Xi^{\pm}$                 |                                                                                          | [0,7; 6,0]                |                               | 0,0 <  y  < 0,5  | $\pi^{\pm}$               | 7. [4.3: 45]            | [0,1; 3,0]                                |
|                               |                  | $\Omega^{\pm}$              |                                                                                          | [1,0; 4,5]                |                               |                  | $K^{\pm}$                 | .,[1,0, 10]             | [0,2; 2,4]                                |
|                               |                  | Φ                           | 6, [24; 175]                                                                             | $[0, 45; \ 4, 5]$         |                               |                  | <sub>K</sub> 0            |                         | [0,0; 8,0]                                |
| AuAu, <b>200</b>              | y  < 0,2         | $\pi^{\pm}$                 | 3, [111; 680]                                                                            | $[0,2;\ 2,0]$             |                               |                  | $n(\bar{n})$              |                         | [0,3; 4,0]                                |
|                               |                  | $K^{\pm}$                   |                                                                                          | $[0,4;\ 2,0]$             |                               |                  | $\Lambda^0$               |                         | [0,6; 8,0]                                |
|                               | y  < 0,5         | $p(\bar{p})$                | 5, [27; 680]                                                                             | $[0,3;\ 3,0]$             | PbPb 5020                     | y  < 0,5         | $\pi^{\pm}$               | 10 [19.5: 2047]         | [0, 1; 10, 0]                             |
|                               |                  | K <sup>0</sup> <sub>S</sub> |                                                                                          | [0,5; 9,0]                |                               |                  | $K^{\pm}$                 | 10,[10,0, 1011]         | [0,1;10,0]                                |
|                               |                  | Λ0                          |                                                                                          | [0,5; 8,0]                |                               |                  | $p(\bar{p})$              |                         | [0,1; 10,0]                               |
| PbPb, <b>2760</b>             | y  < 0,5         | $\pi^{\pm}$                 | $\begin{array}{c} 10,  [13,4;  1601] \\ 7,  [55;  1601] \\ 6,  [261;  1601] \end{array}$ | $[0,1;\ 3,0]$             | pp, <b>7000</b>               | y  < 0,5         | $\pi^{\pm}$               | 10 [2.2; 21.3]          | [0,1;20,0]                                |
|                               |                  | $K^{\pm}$                   |                                                                                          | $[0,2;\ 3,0]$             |                               |                  | $K^{\pm}$                 | 10, [2,2, 21,0]         | [0, 2; 20, 0]                             |
|                               |                  | $K_{s_{o}}^{0}$             |                                                                                          | $[0,4;\ 12,0]$            |                               |                  | K <sup>0</sup>            | $10 [2 2 \cdot 21 3]$   | [0, 2, 20, 0]                             |
|                               |                  | $K^{*0}$                    |                                                                                          | $[0,3;\ 20,0]$            |                               |                  | $K^{*0}$                  | 9 [2 2 2 21 3]          | [0,0; 10,0]                               |
|                               |                  | $p(\bar{p})$                |                                                                                          | $[0,3;\ 4,6]$             |                               |                  | $n(\bar{n})$              | 10 [2, 2, 21, 3]        | [0, 3; 20, 0]                             |
|                               |                  | $\Lambda^0$                 |                                                                                          | [0,6; 12,0]               |                               |                  | Φ                         | 9 [2, 2; 21, 3]         | [0,3; 20,0]<br>[0,4; 10,0]                |
|                               |                  | $\Phi$                      |                                                                                          | $[0,5;\ 21,0]$            |                               |                  | Δ <sup>0</sup>            | 10 [2, 2; 21, 3]        | [0.4: 8.0]                                |
|                               |                  | Ξ±                          | 5, [55; 1601]                                                                            | [0,6; 8,0]                |                               |                  | π±                        | 10, [2,2, 21,0]         | [0, 6; 6, 5]                              |
|                               |                  | $\Omega^{\pm}$              |                                                                                          | $[1,2;\ 7,0]$             |                               |                  | $\overline{\Omega^{\pm}}$ | 5 [2, 2: 21, 3]         | [0,9; 5,5]                                |
| pPb, <b>5020</b>              | -0.5 <  y  < 0.0 | $\pi^{\pm}$                 | 7, [4,3; 45]                                                                             | $[0,1;\ 20,0]$            | pp, <b>13000</b>              | y  < 0,5         | <sub>K</sub> 0            | $10 [2 52 \cdot 25 72]$ | [0,0; 12,0]                               |
|                               |                  | $K^{\pm}$                   |                                                                                          | $[0,2;\ 20,0]$            |                               |                  | ۸ð                        | 10, [2,02, 20,12]       | [0,4, 8,0]                                |
|                               |                  | $K^{*0}$                    | 5, [4,3; 45]                                                                             | [0,0; 16,0]               |                               |                  | -±                        |                         | [0,4, 8,0]                                |
|                               |                  | $p(\bar{p})$                |                                                                                          | [0, 35; 20, 0]            |                               |                  | õ±                        | 5 [2 59, 22 9]          | [0,0, 5,5]                                |
|                               |                  | Φ                           |                                                                                          | $[0,4;\ 20,0]$            |                               |                  | a e —                     | 0, [0,08; 22,8]         | [0,9, 0,0]                                |
|                               |                  | $\Xi^0$                     | 4, [7,1; 35,6]                                                                           | [0,8; 8,0]                |                               |                  |                           |                         |                                           |