Searching for New Proton CT Image Reconstruction Techniques

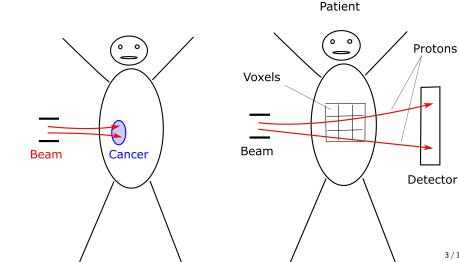
Ákos Sudár 1,2

Gergely Gábor Barnaföldi ¹ and Dávid Légrády ²

¹ Wigner Research Centre for Physics
² Budapest University of Technology and Economics

on behalf of Bergen proton CT collaboration (full collaboration list)

8th Annual Loma Linda Workshop, Washington DC 18.07.2022


The Bergen pCT Collaboration

Members of the Bergen pCT collaboration: ^aDepartment of Physics and Technology, University of Bergen. 5020 Bergen, Norway ^bDepartment of Oncology and Medical Physics, Haukeland University Hospital, 5021 Bergen, Norway ^cDepartment for Theoretical Physics, Heavy-Ion Research Group, Wigner RCP of the Hungarian Academy of Sciences, 1121 Budapest, Hungary ^dInstitute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands ^eDepartment of Computing, Mathematics and Physics, Western Norway University of Applied Science, 5020 Bergen, Norway ^fDepartment of Electrical Engineering, Western Norway University of Applied Sciences, 5020 Bergen, Norway ^gInstitute for Physics, Eötvös Loránd University, 1/A Pázmány P. Sétány, H-1117 Budapest, Hungary ^hDepartment of Physics, University of Oslo, 0371 Oslo, Norway ⁱDepartment of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany ^jDepartment of Physics and Astronomy, Heidelberg University, Heidelberg, Germany ^kCenter for Technology and Transfer (ZTT). University of Applied Sciences Worms. 67549 Worms, Germany ^ILTU, Kharkiv, Ukraine ^mInstitute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand ⁿCollege of Mechanical & Power Engineering, China Three Gorges University, Yichang, China ^oChair for Scientific Visualization Lab, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany ^pChair for Scientific Computing, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany ^qSt. Petersburg University, St. Petersburg, Russia

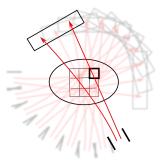
Proton Therapy & Proton Imaging

Therapy:

Imaging:

Image Reconstruction – a Huge Linear Problem

Huge linear problem:


$$\mathbf{y} \;=\; \mathbf{A} \; \mathbf{x} \;,$$

where:

- y is the energy loss of protons ⇔ track integral of RSP
- x RSP value of voxels
- A proton voxel interaction coefficients

Goal: Solve the linear problem

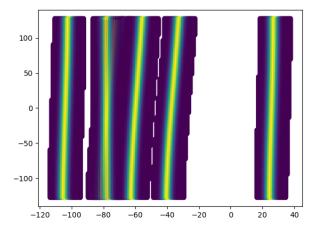
$$\mathbf{x} = \mathbf{f} (\mathbf{y}, \mathbf{A}).$$

New techniques

Image Reconstruction – the Richardson – Lucy algorithm

- First application in the field of proton CT imaging
- Originally developed for astrophysics image reconstruction
- It is a fixed point iteration for sparse systems
- Initialization: arbitrary positive vector Usually unit vector or approximate solution

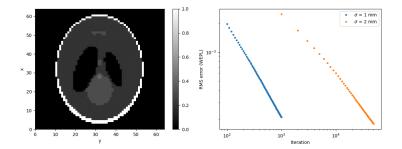
Approximation of the ith voxel of the next iteration:


$$x_{i}^{k+1} = x_{i}^{k} \frac{1}{\sum_{j} A_{i,j}} \sum_{j} \frac{y_{j}}{\sum_{l} A_{l,j} x_{l}^{k}} A_{i,j} ,$$

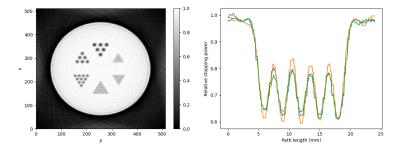
where k is the iteration number. Typically takes 20-300 iterations.

Probability Density Based Proton - Voxel Interaction

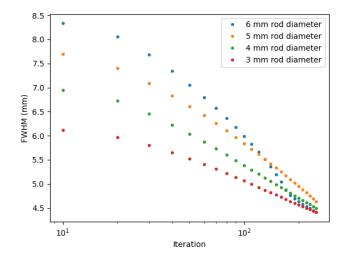
- The distribution of the real proton path is Gaussian around the Most Likely Path (MLP)
- The standard deviation (σ) is changing along the path \Rightarrow average σ is considered in this work
- The MLP is approximated as a third order spline
- The proton voxel interaction coefficient calculation is based on the distance between the center of the voxel and the third order spline MLP
- $\bullet\,$ Every voxel and proton pair evaluated $\Rightarrow\,$ slow even on GPUs


Probability Density Based Proton - Voxel Interaction

Results

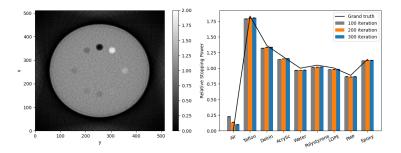

Ideal Imaging – Shepp-Logan Phantom

• Reconstructed RSP distribution and convergence



Derenzo Phantom – Spatial Resolution

- Reconstructed RSP distribution and valley-to-peak distribution
- Spatial resolution is the FWHM of the point spread function
- Proton CT literature: 3.1 mm < my algorithm: 4.4 4.6 mm



Derenzo Phantom – Spatial Resolution

CTP404 Phantom – RSP Accuracy

- Reconstructed RSP distribution and avg. RSP of the inserts
- RSP accuracy: pCT literature: 0.4% < my algorithm: 3%

Summary

Technique:

• Application of Richardson-Lucy algorithm for pCT

Results:

- Promising results
- Further investigations is required

Technique:

• Gaussian probability density based proton - voxel interaction

Results:

- Works
- The advantage of this approach is unclear

Thank you for your attention!

This work would not be possible without the support of the Research Council of Norway (Norges forskningsråd), grant number 859 250858; the Trond Mohn Foundation, grant number BFS2017TMT07; Hungarian National Research, Development and Innovation Office (NK-FIH) grants under the contract numbers OTKA K135515 and 2019-2.1.6-NEMZ_KI-2019-00011. Computational resources were provided by the Wigner Scientific Computing Laboratry.