Do we need viscosity to suppress v_2 ?

<u>Ádám Takács</u>^{*} Eötvös University & Wigner Institute Denes Molnar Purdue University & Wigner Institute Gergely G. Barnaföldi Wigner Institute

*takacs.adam@wigner.mta.hu

Outline

- 1. Motivation: relativistic hydrodynamics to understand heavy ion collisions
- 2. Particlization:

basics, shortcomings, influence on observables

- 3. How much does *f* matter?
- 4. Results
- 5. Conclusion and outlook

Budapest

Motivation

MADAI Collaboration

For students: see Gabriel Denicol's talk from Hot Quarks 2018 https://indico.cern.ch/event/7 03015/contributions/3095199/

Particlization

How is it done?

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

P. Houven et al Phys. Lett. B 503, 58 (2001)K.Dusling, G.D.Moore, D.Teaney, Phys. Rev. C81, 034907 (2010)

D.Molnar & Z.Wolf, f Phys. Rev. C95, 024903 (2017)

Relativistic hydrodynamics [$u^{\mu}(x^{\mu}), \epsilon(x^{\mu}), n(x^{\mu})$]

• conversion fluid \rightarrow particles (*particlization*)

→ 1. phase space density (particle specie i):

$$T^{\mu\nu}(x^{\lambda}) = \sum_{i} \int \frac{d^{3}p}{E} p^{\mu} p^{\nu} f_{i}(x^{\lambda}, \boldsymbol{p})$$

$$N^{\mu}_{c}(x^{\lambda}) = \sum_{i} q_{c,i} \int \frac{d^{3}p}{E} p^{\mu} f_{i}(x^{\lambda}, \boldsymbol{p})$$

$$f_{i}(x^{\mu}, \boldsymbol{p}) = \frac{dN_{i}(t, \boldsymbol{r}, \boldsymbol{p})}{d^{3}r d^{3}p}$$

→ 2. Cooper–Frye formula at $T(or \ \varepsilon)$ =const

$$E\frac{d^3N_i}{d^3\boldsymbol{p}} = \frac{g_i}{(2\pi)^3} \int d\sigma^{\mu} p_{\mu} f_i(x^{\nu}, p)$$

Budapest

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

P. Houven et al Phys. Lett. B 503, 58 (2001)K.Dusling, G.D.Moore, D.Teaney, Phys. Rev. C81, 034907 (2010)

D.Molnar & Z.Wolf, f Phys. Rev. C95, 024903 (2017)

Relativistic hydrodynamics [$u^{\mu}(x^{\mu}), \epsilon(x^{\mu}), n(x^{\mu})$]

• conversion fluid \rightarrow particles (*particlization*)

► 1. phase space density (particle specie *i*):

$$T^{\mu\nu}(x^{\lambda}) = \sum_{i} \int \frac{d^{3}p}{E} p^{\mu} p^{\nu} f_{i}(x^{\lambda}, \boldsymbol{p}) \\
 N_{c}^{\mu}(x^{\lambda}) = \sum_{i} q_{c,i} \int \frac{d^{3}p}{E} p^{\mu} f_{i}(x^{\lambda}, \boldsymbol{p}) \right\} \quad f_{i}(x^{\mu}, \boldsymbol{p}) = \frac{dN_{i}(t, \boldsymbol{r}, \boldsymbol{p})}{d^{3}rd^{3}p}$$

→ 2. Cooper–Frye formula at $T(or \ \varepsilon)$ =const

$$E\frac{d^3N_i}{d^3\boldsymbol{p}} = \frac{g_i}{(2\pi)^3} \int d\sigma^{\mu} p_{\mu} f_i(x^{\nu}, p)$$

A. Takacs & D. Molnar

P. Houven et al Phys. Lett. B **503**, 58 (2001)

K.Dusling, G.D.Moore, D.Teaney, Phys. Rev. C81, 034907 (2010)

D.Molnar & Z.Wolf, f Phys. Rev. C95, 024903 (2017)

<u>Assumption 1.</u>: local equilibrium \rightarrow thermal and chemical equilibrium

$$f_i^{eq}(x, \mathbf{p}) = \frac{g_i}{(2\pi)^3} e^{\frac{\mu_i(x) - p_\alpha u^\alpha(x)}{T(x)}} \qquad \mu_i = \sum_c q_{c,i} \mu_c(x)$$

Local rest frame $[u_{\mu_{LR}}=(1, 0)]$ + Equation of state

$$\begin{cases} f^{eq}(x, \boldsymbol{p}) \\ T_{id}^{\mu\nu}(x^{\lambda}) = \operatorname{diag}(\varepsilon(x^{\lambda}), -\mathbf{1}P(x^{\lambda})) \\ N_{c,id}^{\mu}(x^{\lambda}) = n_{c}(x^{\lambda})u^{\mu}(x^{\lambda}) \end{cases} \end{cases} \quad T(x^{\nu}), \mu_{i}(x^{\nu})$$

<u>Assumption 2.</u>: near to the local equilibrium

$$f_{i}(x^{\mu}, \mathbf{p}) = f_{i}^{eq}(x^{\mu}, \mathbf{p}) + \delta f_{i}(x^{\mu}, \mathbf{p}) \longrightarrow \begin{array}{c} T^{\mu\nu} = T_{id}^{\mu\nu} + \delta T^{\mu\nu} \\ N_{c}^{\mu} = N_{c,id}^{\mu} + N_{c}^{\mu} \end{array} \longrightarrow \begin{array}{c} T(x^{\nu}), \mu_{i}(x^{\nu}) \\ \delta f_{i}(x^{\mu}, \mathbf{p}) \end{array}$$

<u>Problem</u>: finite set of conditions, can be satisfied with infinitely many different δf

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018. Budapest

P. Houven et al Phys. Lett. B **503**, 58 (2001)

K.Dusling, G.D.Moore, D.Teaney, Phys. Rev. C81, 034907 (2010)

D.Molnar & Z.Wolf, f Phys. Rev. C95, 024903 (2017)

<u>Assumption 1.</u>: local equilibrium \rightarrow thermal and chemical equilibrium

$$f_i^{eq}(x, \mathbf{p}) = \frac{g_i}{(2\pi)^3} e^{\frac{\mu_i(x) - p_\alpha u^\alpha(x)}{T(x)}} \qquad \mu_i = \sum_c q_{c,i} \mu_c(x)$$

Local rest frame $[u_{\mu_{LR}}=(1, 0)]$ + Equation of state

$$\begin{cases} f^{eq}(x, \boldsymbol{p}) \\ T_{id}^{\mu\nu}(x^{\lambda}) = \operatorname{diag}(\varepsilon(x^{\lambda}), -\mathbf{1}P(x^{\lambda})) \\ N_{c,id}^{\mu}(x^{\lambda}) = n_{c}(x^{\lambda})u^{\mu}(x^{\lambda}) \end{cases} \end{cases} \quad T(x^{\nu}), \mu_{i}(x^{\nu})$$

<u>Assumption 2.</u>: near to the local equilibrium

$$f_{i}(x^{\mu}, \boldsymbol{p}) = f_{i}^{eq}(x^{\mu}, \boldsymbol{p}) + \delta f_{i}(x^{\mu}, \boldsymbol{p}) \longrightarrow \begin{array}{c} T^{\mu\nu} = T_{id}^{\mu\nu} + \delta T^{\mu\nu} \\ N_{c}^{\mu} = N_{c,id}^{\mu} + N_{c}^{\mu} \end{array} \longrightarrow \begin{array}{c} T(x^{\nu}), \mu_{i}(x^{\nu}) \\ \delta f_{i}(x^{\mu}, \boldsymbol{p}) \end{array}$$

<u>Problem</u>: finite set of conditions, can be satisfied with infinitely many different $\delta f_i!$

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

Budapest

P. Houven et al Phys. Lett. B **503**, 58 (2001)

K.Dusling, G.D.Moore, D.Teaney, Phys. Rev. C81, 034907 (2010)

D.Molnar & Z.Wolf, f Phys. Rev. C95, 024903 (2017)

<u>Assumption 1.</u>: local equilibrium \rightarrow thermal and chemical equilibrium

$$f_i^{eq}(x, \mathbf{p}) = \frac{g_i}{(2\pi)^3} e^{\frac{\mu_i(x) - p_\alpha u^\alpha(x)}{T(x)}} \qquad \mu_i = \sum_c q_{c,i} \mu_c(x)$$

Local rest frame $[u_{\mu_{LR}}=(1, 0)]$ + Equation of state

$$\begin{cases}
f^{eq}(x, \boldsymbol{p}) \\
T_{id}^{\mu\nu}(x^{\lambda}) = \operatorname{diag}(\varepsilon(x^{\lambda}), -\mathbf{1}P(x^{\lambda})) \\
N_{c,id}^{\mu}(x^{\lambda}) = n_{c}(x^{\lambda})u^{\mu}(x^{\lambda})
\end{cases} \quad T(x^{\nu}), \mu_{i}(x^{\nu})$$

<u>Assumption 2.</u>: close to the local equilibrium

$$f_i(x^{\mu}, \mathbf{p}) = f_i^{eq}(x^{\mu}, \mathbf{p}) + \delta f_i(x^{\mu}, \mathbf{p}) \longrightarrow \begin{array}{c} T^{\mu\nu} = T_{id}^{\mu\nu} + \delta T^{\mu\nu} \\ N_c^{\mu} = N_{c,id}^{\mu} + N_c^{\mu} \end{array} \longrightarrow \begin{array}{c} T(x^{\nu}), \mu_i(x^{\nu}) \\ \delta f_i(x^{\mu}, \mathbf{p}) \end{array}$$

<u>Problem</u>: finite set of conditions can be satisfied with infinitely many different $\delta f_i!$

A. Takacs & D. Molnar

Zimányi School

Assumptions for δf_i (for dissipative fluids):

- Democratic Grad (scalar theory and momentum diffusion): $\delta f_i \sim p^2$ all *i* M.Luzum & P.Romatschke, Phys.Rev. C78, 034915 (2008)
- Power law dependence: $\delta f_i \sim p^{\alpha}$ all *i* or multicomponent gas

K.Dusling, G.D.Moore, D.Teaney, Phys.Rev. C81, 034907 (2010)

• Dynamic (linearized kinetic transport)

D.Molnar & Z.Wolff, Phys.Rev. C95, 024903 (2017) Z.Wolff & D.Molnar, Phys.Rev. C96, 044909 (2017) Reprint from: Phys.Rev. C95, 024903 (2017)

<u>Problem</u>: theoretical uncertainty in viscosity!

Budapest

03. 12. 2018.

Particlization

Do we know f_{eq} ? (What if it is NOT Botzmann?)

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

Origin of $f_{eqi}(x,p)$

- 1) <u>Microscopic theory</u> (kinetic transport) with *simple* interaction \rightarrow interaction termalizes
- 2) <u>Microscopic theory</u> with long-range interaction or fluctuation + relaxation \rightarrow non-Boltzmann f_{eq} (e.g., Tsallis)
- 3) <u>Conformal hydro (ϵ =3P) doesn't require equilibrium</u>. Any isotropic $f_{eq}(p)$ would do

P.Arnold, J.Lenaghan, G.D.Moore, L.G. Yaffe, Phys. Rev. Lett. 94, 072302 (2005)

A. Takacs & D. Molnar

Budapest

Isortopic Tsallis phase space density

Ideal hydro with Tsallis distribution:

$$f^{Ts}(x, \boldsymbol{p}) = N \left(1 + \frac{\alpha}{T_{\alpha}} p^{\mu} u_{\mu}(x) \right)^{-1/\alpha}$$
$$\lim_{\alpha \to 0} T_{\alpha} = T \quad \text{(Boltzmann limit)}$$

$$\begin{array}{c}
10 \\
10^{-1} \\
10^{-1} \\
10^{-2} \\
10^{-3} \\
10^{-3} \\
10^{-4} \\
0 \\
2 \\
4 \\
0 \\
2 \\
4 \\
0 \\
2 \\
4 \\
6 \\
8 \\
10 \\
0 \\
0 \\
2 \\
4 \\
p^{\mu}u_{\mu}/T_{\alpha}
\end{array}$$

Budapest

To set (N, α, T_{α}) :

Fix to partial ε and P (T_{α} changes): simplest assumption.

Zimányi School

Results: 4-Source Fireball Model

P. Houven et al Phys. Lett. B 503, 58 (2001)

 v_y

 $-v_y$

- Simple way to model $v_2(p_T)$
- 4-uniform fireballs (same *V* and *T*), no longitud. Expansion boosted symmetrically $(\pm v_x, \pm v_y)$ and t=const freezes-out

$$f_4(p_T, \phi) = f_{(+v_x)} + f_{(-v_x)} + f_{(+v_y)} + f_{(-v_y)}$$
$$p_{v_x}^{\mu} = (\gamma_x(m_T x - v_x p_T \cos \phi), \gamma_x(p_T \cos \phi - v_x m_T \cosh y), p_T \sin \phi, m_T \sinh y)$$

$$v_n(p_T) = \frac{\int_0^{2\pi} d\phi f_4(p_T, \phi) \cos(n\phi)}{\int_0^{2\pi} d\phi f_4(p_T, \phi)}$$

Similar setup to: D.Molnar & Z.Wolff, Phys.Rev. C95, 024903 (2017) Z.Wolff & D.Molnar, Phys.Rev. C96, 044909 (2017)

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

 $-v_x$

Budapest

14

 v_r

Results: 4-Source Fireball Model

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

15

Budapest

Hydrodynamic Simulation

- 1. Initial condition: 20-30% Au+Au @ 200 GeV analytic Glauber Model S_0 =110 fm⁻³, *b*=7 fm ~ 20-30% centrality
- 2. Ideal hydro 2+1D with AZHYDRO package μ =0
- 3. Cooper–Frye freeze-out with Tsalis phase space density $\varepsilon(x)$ and P(x) are fixed, T_f =165 MeV
- 4. Resonance decay is included with RESO

Similar setup to: D.Molnar & Z.Wolff, Phys.Rev. C95, 024903 (2017) Z.Wolff & D.Molnar, Phys.Rev. C96, 044909 (2017)

A. Takacs & D. Molnar

Zimányi School

- Beginning doesn't change, α describes the tail
- More suitable shape for experimental data

Budapest

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

- The $\alpha \rightarrow 0$ limit gives back the Boltzmann case
- The α present a suppression in flow

Beginning doesn't change

• Less suppression for proton than pion Just like shear viscosity

Budapest

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

- The α present a suppression in flow
- Less suppression for proton than pion Just like shear viscosity

Figure from: D.Molnar & Z.Wolff, Phys.Rev. C95, 024903 (2017)

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

Budapest

- The choice of δf_i is arbitrary \rightarrow uncertainty in observables (known)
- The choice of f_{eq} is arbitrary too \rightarrow additional uncertainty
- Keeping the full ideal hydro, but using Tsallis as a phase space density
 - Better shape for the spectra!
 - Suppression of flow without dissipation but similar to shear viscosity $\eta_s/s \sim 0.05$ for $\alpha \sim 0.05$. From previous spectrum studies: $\alpha \sim 0.07$ K.Urmossy, G.G.Barnafoldi, T.S.Biro, J. of Phys. Conf.Ser. 612 012048 (2015)
- Why does hydrodynamics work?
 - Can isotropization occur for heavy ions?
 - If it does, can the system be stuck in that state?

Conformal theory

Budapest

20

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

Thank you for your attention!

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

Dissipative fluid

M.Luzum & P.Romatschke, Phys.Rev. C78, 034915 (2008)
D.Molnar & P.Houvinen, J.Phys. G35, 104125 (2008)
K.Dusling, G.D.Moore, D.Teaney, Phys.Rev. C81, 034907 (2010)
D.Molnar & Z.Wolff, Phys.Rev. C95, 024903 (2017)

Close to local equilibrium:

$$f_i(x, \boldsymbol{p}) = f_i^{eq}(x, \boldsymbol{p}) + \delta f_i(x, \boldsymbol{p})$$

$$T^{\mu\nu} = T^{\mu\nu}_{id} + \delta T^{\mu\nu} \qquad N^{\mu}_{c} = N^{\mu}_{c,id} + N^{\mu}_{c}$$

$$\delta T^{\mu\nu} = \sum_{i} \int \frac{d^{3}p}{E} p^{\mu} p^{\nu} \delta f_{i}(x, \boldsymbol{p}) \\ \delta N_{c}^{\mu}(x) = \sum_{i} q_{c,i} \int \frac{d^{3}p}{E} p^{\mu} \delta f_{i}(x, \boldsymbol{p}) \end{cases} \quad \delta f_{i}(x, \boldsymbol{p})$$

Problem: finite set of conditions can be satisfied with infinitely many different $\delta f_i!$

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

Backup: 4-Fireball Source Model

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

Budapest

A. Takacs & D. Molnar

Zimányi School

03. 12. 2018.

26

Budapest