Proton CT A novel diagnostic tool in cancer therapy

Monika Varga-Kofarago MTA Wigner RCP on behalf of the pCT Collaboration

7th December 2018

Zimányi School

This work has been supported by the Hungarian NKFIH/OTKA K 120660 grant.

Cancer statistics and therapies

Cancer statistics and therapies

- Contributions to successful treatment of cancer
 - 45-50% surgery
 - 40-50% radiotherapy
 - 10-15% chemotherapy
- Radiotherapy is an important weapon in the battle against cancer

K. Peach, Heavy Ions in Science and Health workshop, Bergen, 2012

Radiotherapy and its problems

- Goal: damage the DNA of cancer cells
- Direct or indirect ionization
- Treatment with photons or charged particles (e.g. protons)
- Photons: mostly indirect ionization through forming free radicals
- Protons: mostly direct ionization

Radiotherapy and its problems

- Goal: damage the DNA of cancer cells
- Direct or indirect ionization
- Treatment with photons or charged particles (e.g. protons)
- Photons: mostly indirect ionization through forming free radicals
- Protons: mostly direct ionization
- Need to minimize the damage to healthy tissue

Hadron therapy – advantages

© 2013 American Association for Cancer Research

Photons are absorbed mostly at the entrance

Charged particles

- lose most of their energy in the Bragg peak
- Relatively low dose in front of the tumor
- Sharp fall-off of dose deposition (<mm)

R. Mohan, A. Mahaian and B. D. Minsky. Clin Cancer Res December 1 2013 (19) (23)

Hadron therapy centers in Europe

Particle therapy centres in Europe - 2015

M. Dosanjh, M. Cirilli, S. Myers, S. Navin (2016). Medical applications at CERN and the ENLIGHT network. Frontiers in Oncology. 6. 10.3389/fonc.2016.00009.

Monika Varga-Kofarago

Proton CT - A novel diagnostic tool in cancer therapy

Treatment facilities

Injector

Synchrotron

HEBT+Gantry

Medical Areas

Proton CT - A novel diagnostic tool in cancer therapy

HIT

Heidelberger Ionenstrahl-Therapiezentrum

Treatment facilities

Ion source

Synchrotron

Treatment room

Superconducting gantry

Extraction and beam transport

Monika Varga-Kofarago

Proton CT - A novel diagnostic tool in cancer therapy

- Stopping power in front of the tumor to be known precisely
- Stopping power is described by Bethe-Bloch formula:

 $dE/dx \sim electron \ density imes ln \ rac{max. \ energy \ transfer \ in \ single \ collision}{ ext{effective ionization potential}^2}$

- Derive stopping power from X-ray CT
- X-ray attenuation in tissue depends also strongly on Z (Z⁵ for photoelectric effect)

Proton therapy – missing information

- Scaled Hounsfield Units (scanner specific) \sim attenuation coefficient
- Not a clear relation with the stopping power

Schaffner, B. and E. Pedroni, Phys Med Biol, 1998. 43(6): p. 1579-92.

Range uncertainties and scattering

- Single energy CT: up to 7.4% uncertainty
- Target volume is increased by up to 1 cm in beam direction
- Avoid beam directions with a critical organ behind the tumor
- Dual energy CT: up to 1.7% uncertainty
- Proton CT: up to 0.3% uncertainty

A comparison of dual energy CT and proton CT for stopping power estimation

D. C. Hansen, J. Seco, T. S. Sorensenn, J. B. B. Petersen, J. E. Wildberger, F. Verhaegen and G. Landry

Range uncertainties and scattering

- Single energy CT: up to 7.4% uncertainty
- Target volume is increased by up to 1 cm in beam direction
- Avoid beam directions with a critical organ behind the tumor
- Dual energy CT: up to 1.7% uncertainty
- Proton CT: up to 0.3% uncertainty

A comparison of dual energy CT and proton CT for stopping power estimation

D. C. Hansen, J. Seco, T. S. Sorensenn, J. B. B. Petersen, J. E. Wildberger, F. Verhaegen and G. Landry

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

- Multiple Coulomb scattering in the material
- Measurement before and after the patient needed

Proton CT – concept

H.F.-W. Sadrozinski, Nuclear Instruments and Methods in Physics Research A 732 (2013) 34-39

Proton CT – concept

- \overrightarrow{x} and \overrightarrow{p} from beam optics and scanning system • $\overrightarrow{x'}$, θ , φ and E' to be measured
- Reconstruction of trajectories in 3D \longrightarrow place of irradiation
- \bullet Measurement of range in external absorber \longrightarrow lost energy

Proton CT – concept

- \overrightarrow{x} and \overrightarrow{p} from beam optics and scanning system
- $\overrightarrow{x'}$, θ , φ and E' to be measured
- \bullet Reconstruction of trajectories in 3D \longrightarrow place of irradiation
- \bullet Measurement of range in external absorber \longrightarrow lost energy
- \bullet Before the treatment \longrightarrow 3D map of electron density in target
- Quasi-simultaneously with therapeutic beam
 - Patient alignment
 - Online verification of dose
 - Dose optimization

Requirements of the detector

- High position resolution (tens of μm)
- Simultaneous tracking of large particle multiplicities $(10^7 10^9 \text{ protons/s})$
- Fast readout
- Radiation hardness
- Front detector: low mass, thin sensors $(50 100 \ \mu m)$
- Back detector: good range resolution

₩

- High granularity digital sampling calorimeter
- Monolithic Active Pixel Sensors (MAPS) as active layers

Monolithic Active Pixel Sensors (MAPS)

- Silicon sensors
- \bullet Using TowerJazz 0.18 μm CMOS imaging process
- \bullet High-resistivity (> 1k\Omega cm) epitaxial layer on p-type substrate
- Deep PWELL shields NWELL of PMOS transistors
 - Allows full CMOS circuitry in active area
- Moderate reverse substrate biasing possible
 - Larger depletion volume

Digital calorimeter prototypes

- Silicon-tungsten sampling calorimeter (constructed at Utrecht University)
- Optimized for electromagnetic showers
- Active layers: MAPS (MIMOSA 23 IPHC Strasbourg)
- Compact design 4 imes 4 imes 11.6 cm³
- 24 layers
- Absorbers: 3.5 mm of W

NIMA 860, 51-61, 2017, https://arxiv.org/abs/1611.02031 Jinst 13, P01014, 2018, https://arxiv.org/abs/1708.05164

Proton CT – A novel diagnostic tool in cancer therapy

Monika Varga-Kofarago

Results from the prototype

H. Pettersen, PhD thesis, UiB, 2018

- Data was taken at KVI in Groningen with 188 MeV protons
- Good agreement between data and simulations

Results from the prototype

H. Pettersen, PhD thesis, UiB, 2018

- Data was taken at KVI in Groningen
- Good agreement between data and simulations

Optimization of the design

- Absorber
 - Energy degrader, mechanical carrier, cooling medium
 - Material choice: Al
 - Thickness: 3.5 mm
- Longitudinal segmentation
 - Number of sensitive and absorber layers: 41
- Geometry
 - Front area: 27 cm x 15 cm

- ALPIDE ALICE PIxel DEtector
- Developed for the upgrade of the ALICE Inner Tacker System
- Large silicon sensor (15 mm \times 30 mm)
- 512 \times 1024 pixels
- $\bullet\,$ Pixels are 27 $\mu m\,\times\,$ 29 μm
- Digital readout with priority encoder
- Thin sensor (50 μm or 100 μm)
- Efficiency > 99%
- $\bullet~Resolution$ $\sim 5~\mu m$

											-
F				1					-		
E				۰.	•	1	1			1	
Ξ,	+	+	+	۰.							
D.											
			2	SO	n	nr	n				

Mounting

- ALPIDE mounted on thin flex cables
 - Aluminum-polyamide dielectrics: 30 μm Al, 20 μm plastic
 - Design and production: Utrecht University, Netherlands and LTU, Kharkiv, Ukraine
- Intermediate prototype
 - Chip cable with two ALPIDE sensors

Picture from LTU

Monika Varga-Kofarago

Mounting

- ALPIDE mounted on thin flex cables
 - Aluminum-polyamide dielectrics: 30 μm Al, 20 μm plastic
 - Design and production: Utrecht University, Netherlands and LTU, Kharkiv, Ukraine
- Intermediate prototype
 - Chip cable with two ALPIDE sensors
- Final system
 - $\bullet\,$ Flexible carrier board modules with 2 \times 3 strings with 9 chips

- Third	`* <mark>}</mark>	1		1 m	- Part	
1. Int	Îm	- Finit	1	- Inf	1	1

Picture from Utrecht University

Picture from LTU

Monika Varga-Kofarago

Conclusions

- $\bullet\,$ Hadron therapy \longrightarrow lower unnecessary dose for the patient
- Uncertainty in energy loss from extrapolation from CT
- pCT: powerful imaging tool to reduce the uncertainty
- Digital sampling calorimeter made of ALPIDE sensors
- First sensor module by the end of the year

Collaboration:

- University of Bergen
- Helse Bergen
- Utrecht University
- DKFZ Heidelberg
- Wigner Budapest
- Western Norway University of Applied Sciences

Thank you for your attention!

