ELFT Fizikus Vándorgyűlés, Sopron, 2019 augusztus 21-24

Nehéz kvarkok keletkezése az LHC ALICE kísérleténél

Vértesi Róbert

vertesi.robert@wigner.mta.hu

MTA Wigner Fizikai Kutatóközpont Részecske- és Magfizikai Intézete

> ALICE-Budapest csoport http://alice.wigner.mta.hu

Próbák nehéz kvarkokkal

- A nehéz kvarkok keltése: korai folyamatokban
 - $\tau_{c,b} \sim \frac{1\!\!\!/_2}{2} m_{c,b} \sim 0.1~fm << \tau_{QGP} \sim 5\text{--}10~fm$ Rapp, Hees, ISBN:978-981-4293-28-0
- A számuk (gyakorlatilag) nem változik

 $m >> \Lambda (m_c \sim 1.5 \text{ GeV}, m_b \sim 5 \text{ GeV})$

- Nincs ízváltás
- Elhanyagolható termális keletkezés
- → Nagyon csekély keltés, elnyelődés az sQGP-ben Collins, Soper, Sterman, NPB 263 (1986) 37.

Próbák nehéz kvarkokkal

- A nehéz kvarkok keltése: korai folyamatokban
 - $\tau_{c,b} \sim \frac{1\!\!\!/_2}{2} m_{c,b} \sim 0.1~fm << \tau_{QGP} \sim 5\text{--}10~fm$ Rapp, Hees, ISBN:978-981-4293-28-0
- A számuk (gyakorlatilag) nem változik

 $m >> \Lambda (m_c \sim 1.5 \text{ GeV}, m_b \sim 5 \text{ GeV})$

- Nincs ízváltás
- Elhanyagolható termális keletkezés
- → Nagyon csekély keltés, elnyelődés az sQGP-ben Collins, Soper, Sterman, NPB 263 (1986) 37.

Transzport a teljes reakción keresztül

- Kinematikai tulajdonságok változnak az sQGP-ben: energiavesztés ütközéssel és sugárzással
- Információt hoz a transzport paraméterekről
- …egészen alacsony impulzusokig
- Könnyű vagy nehéz? Charm vagy bottom?

Próbák nehéz kvarkokkal

A nehéz kvarkok keltése: korai folyamatokban

 $\tau_{c,b} \sim \frac{1\!\!\!/_2}{2} \, m_{c,b} \sim 0.1 \, \, fm << \tau_{QGP} \sim 5\text{--}10 \, \, fm$ Rapp, Hees, ISBN:978-981-4293-28-0

A számuk (gyakorlatilag) nem változik

 $m >> \Lambda (m_c \sim 1.5 \text{ GeV}, m_b \sim 5 \text{ GeV})$

- Nincs ízváltás
- Elhanyagolható termális keletkezés
- → Nagyon csekély keltés, elnyelődés az sQGP-ben Collins, Soper, Sterman, NPB 263 (1986) 37.
- Transzport a teljes reakción keresztül
 - Kinematikai tulajdonságok változnak az sQGP-ben: energiavesztés ütközéssel és sugárzással
 - Információt hoz a transzport paraméterekről
 - …egészen alacsony impulzusokig
 - Könnyű vagy nehéz? Charm vagy bottom?

Nehéz kvarkok p+p ütközésekben

Nehéz kvarkok p+p ütközésekben

Nehéz kvarkok p+p ütközésekben

A nehéz kvarkok észlelése

- Kvarkbezárás: c és b közvetett kimutatás lehetséges csak
- Hadronizáció során mezonokká (D, B) alakul
- Kimutatás:

bomlástermékek azonosítása

A nehéz kvarkok észlelése

- Kvarkbezárás: c és b közvetett kimutatás lehetséges csak
- Hadronizáció során mezonokká (D, B) alakul
- Kimutatás:

bomlástermékek azonosítása

A nehéz kvarkok észlelése

- Kvarkbezárás: c és b közvetett kimutatás lehetséges csak
- Hadronizáció során mezonokká (D, B) alakul
- Kimutatás:

bomlástermékek azonosítása

A nehéz kvarkok észlelése

- Kvarkbezárás: c és b közvetett kimutatás lehetséges csak
- Hadronizáció során mezonokká (D, B) alakul
- Kimutatás:

bomlástermékek azonosítása

a bomlás helyének visszakövetése (másodlagos vertex rekonstrukciója)

Nehéz kvarkok élettartama: $c\tau(D) \sim 100-300 \text{ mm}$ $c\tau(B) \sim 400-500 \text{ mm}$

Másodlagos vertex felbontása: <100 mm

ALICE

- Az LHC dedikált nehézion-kísérlete
- kiemelkedő részecskeazonosítási képességek

kiemelkedő részecskeazonosítási képességek

pp: D-mezonok keltése

Eur.Phys.J. C79 (2019) no.5, 388

 $\sqrt{s=5.02 \text{ TeV pp: új, nagy pontosságú D^0, D^{*+}, D^+, D_s^+ mérések}$

- D⁰ alacsony impulzusokig ($p_T > 0 \text{ GeV}/c$): csak PID
- Új referencia nehézion-rendszerekhez (p-Pb and Pb-Pb)

A pQCD modellek részletes ellenőrzése

- Faktorizáción alapuló modellek jól leírják
- Erős megszorítás a modellekre (kísérleti bizonytalanság kisebb)

Elektronok és müonok b,c kvarkokból

- FONLL pQCD mind a beauty, mind a charm bomlási elektronokat leírja
- Mid-rapiditású elektronok és előreszórt (2.5<y<4) müonok jó leírása

charm-jetek spektruma

- Charm azonosítása a D-mezonok teljes rekonstrukciójával
 - Mérési pontok p_T^{jet} = 5 GeV/c impulzustól fölfelé, 7 és 13 TeV energián
- POWHEG(HVQ)+PYTHIA6(Perugia11) megfelelően leírja az adatokat
- Erős megszorítások a modellekre
 => egyedi lehetőség a jet jellemzőinek tanulmányozására Referencia a maganyag-módosulás méréséhez

Barion-mezon arány: Λ_c^+/D^0 , Ξ_c^0/D^0

 \mathbf{I} \mathbf{U} j, pontos Λ_{c}^{+} mérés, és az első Ξ_{c} mérés az LHC-nél

- Az ee-ütközéseken alapuló modellek alulbecslik a barion:mezon arányt (a Ξ_c^{0/}D⁰ és Λ_c⁺/D⁰ esetében is)
- Függ-e a hadronizáció az ütköző rendszertől?
 - PYTHIA8 színhúrképződés vezető renden túl: Christiansen, Skands, JHEP 1508 (2015) 003
 - Ismeretlen charm-tartalmú barionállapotok bomlásából származó többlet: He, Rapp, 1902.08889

Nehéz kvarkok p+A ütközésekben

- PDF módosulása (árnyékolás)
- Gluon-szaturáció
- Sokszoros szórások ("k_T-kiszélesedés")
- Elnyelődés a maganyagban

Nukleáris módosulás (R_{pA,} Q_{CP})

$$R_{\rm pPb} = \frac{\mathrm{d}\sigma_{\rm pPb} / \mathrm{d}p_{\rm T}}{A \times \mathrm{d}\sigma_{\rm pp} / \mathrm{d}p_{\rm T}}$$

 Viszonyítási alap a forró maganyag hatásaira nézve Megj: Nem kizárt a forró maganyag sem a nagyenergiás p+A ütközésekben

D-mezonok nukleáris módosulása

Új referencia √s=5.02 TeV pp adat -> kisebb szisztematikus hiba

Modellek: CGC, arXiv:1308.1258 MNR: NPB 373 (1992) 295 Vitev, PRC 75 (2007) 064906 Kang, PLB 740, 23 (2015)

D-mezonok keltése p-Pb ütközésekben 5.02 TeV-en

- Nincs szignifikáns módosulás a pp ütközésekhez képest
- Nincs CNM hatásokra utaló jel közepes p_{T} -től fölfelé
- Az adatokat számos, CNM hatást tartalmazó modell leírja

Forró maganyag keletkezhet-e?

Új referencia √s=5.02 TeV pp adat -> kisebb szisztematikus hiba

Modellek: Duke, NPPP 276 (2016) 225 Powlang, JHEP 03 (2016) 123

D-mezonok keltése p-Pb ütközésekben 5.02 TeV-en

- Nincs szignifikáns módosulás a pp ütközésekhez képest
- Nincs CNM hatásokra utaló jel közepes p_{T} -től fölfelé
- Az adatokat számos, CNM hatást tartalmazó modell leírja
- Egy QGP-képződést feltételező modell szintén leírja az adatokat

Nehézkvark-jetek

Nehézkvark-jetek alacsony impulzusokig: p_T = 10 GeV/c

- A HFE jetek nem módosulnak szignifikánsan mid-rapiditásnál
 - Függetlenül a jet-átmérőtől

Nehézkvark-jetek

- Nehézkvark-jetek alacsony impulzusokig: $p_T = 10 \text{ GeV}/c$
- A HFE jetek nem módosulnak szignifikánsan mid-rapiditásnál
 - Függetlenül a jet-átmérőtől
- A másodlagos vertexekkel azonosított beauty jetek hatáskeresztmetszetét leírja a POWHEG HVQ x A (pp)

Nehéz kvarkok A+A ütközésekben

- Energiaveszteség
 - Sugárzási energiaveszteség
 - Energia leadása gluonsugárzással
 - Tiltott kúp, színtöltés hatása:
 - várakozás: tömeg szerinti rendezettség

 $\Delta E_{g} > \Delta E_{q} > \Delta E_{c} > \Delta E_{b} \rightarrow R_{AA}^{h} < R_{AA}^{D} < R_{AA}^{B}$

Nukleáris módosulási tényező:

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}$$

Nehéz kvarkok A+A ütközésekben

Energiaveszteség

- Sugárzási energiaveszteség
- Energia leadása gluonsugárzással
- Tiltott kúp, színtöltés hatása:
- várakozás: tömeg szerinti rendezettség

$$\Delta E_{g} > \Delta E_{q} > \Delta E_{c} > \Delta E_{b} \rightarrow R_{AA}^{h} < R_{AA}^{D} < R_{AA}^{B}$$

Nukleáris módosulási tényező:

AE (GeV)

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}$$

Kollektív dinamika

- Nehéz kvark könnyű kvark koaleszcencia?
- Nehéz kvark termalizációja?

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos\left(n(\varphi - \Psi_R)\right) \right)$$

$$v_n = \langle \cos(n(\varphi - \Psi_R)) \rangle$$

Azimutális anizotrópia paraméter v_2 : "elliptikus folyás"

Cao et. al., NPA 904 (2013) 653c

Charm quark

0-20% centrality

20

E (GeV)

25

Collisional

Radiative

Total

D-mezonok energialeadása

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}N_{\rm pp}/\mathrm{d}p_{\rm T}}$$

Erős elnyomás nagy p_T-ken

- A charm elnyomása a könnyű és a ritka kvarkokhoz hasonló
- Nincs tömeg szerinti rendezettség! (tiltott kúp, színtöltés-hatás)
- Alacsony p_T-ken a D gyengébb elnyomása

D-mezonok energialeadása

 $R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}$

Erős elnyomás nagy p_T-ken

- A charm elnyomása a könnyű és a ritka kvarkokhoz hasonló
- Nincs tömeg szerinti rendezettség! (tiltott kúp, színtöltés-hatás)
- Alacsony p_T-ken a D és D_s gyengébb elnyomása

D-mezonok energialeadása

Erős elnyomás nagy p_T-ken

- A charm elnyomása a könnyű és a ritka kvarkokhoz hasonló
- Nincs tömeg szerinti rendezettség! (tiltott kúp, színtöltés-hatás)
- Alacsony p_{T} -ken a **D** és **D**_s gyengébb elnyomása
- A D_S-nek a D-nél gyengébb elnyomására utaló eredmények

Charm és beauty: HF-elektronok

- Jelentős (c,b)→e elnyomás Pb-Pb ütközésekben, közepes és nagy p_{T} -n
 - Megjegyzés: A p-Pb adatok bizonytalanságon belül nem mutatnak elnyomást
- Elkülönített beauty elektronok gyengébb b-quark elnyomásra utalnak

Charm és beauty: HF-elektronok

- Jelentős (c,b)→e elnyomás Pb-Pb ütközésekben, közepes és nagy p_{T} -n
 - Megjegyzés: A p-Pb adatok bizonytalanságon belül nem mutatnak elnyomást
- Elkülönített beauty elektronok gyengébb b-quark elnyomásra utalnak
- A modellek a (c,b)→e és a b(→c)→e járulékokat is leírják
 - A különbség oka: kvarktömegfüggő energiaveszteség

Kollektív viselkedés: charm

• Új kis p_T -s adatok: erős megszorítás a modellekre

- Feladat: D és D_s R_{AA} és v₂ szimultán leírása
- Charm és könnyű kvarkok koaleszcenciája árnyékolással és ütközési/sugárzási energiaveszteséggel

Esemény alakjától függő anizotrópia

Események kategorizálása a *másodrendű redukált anizotrópia vektor* alapján

$$q_2 = |oldsymbol{Q}_2|/\sqrt{M}, \ oldsymbol{Q}_2 = \left(egin{array}{c} \sum_{i=1}^M\cos(2arphi_i)\ \sum_{i=1}^M\sin(2arphi_i)\end{array}
ight)$$

- A D mezonok azimutális anizotrópiája a könnyű hadronokéval közel azonos (kategorizálás nélkül)
- Alacsony(magas) q₂ értékekhez alacsonyabb(magasabb) azimutális anizotrópia tartozik
- Transzportmodellek elfogadhatóan leírják a méréseket

Vértesi Róbert - Nehéz kvarkok az ALICE kísérletnél

Λ_c⁰/D nehézion-ütközésekben

- Pb-Pb ütközések esetén a pp-nél magasabb Λ_c⁺/D⁰ arányra utaló jel
 - pp, pPb, Pb-Pb adatok: az ütköző rendszer méretétől való függés a jelen pontosság mellett nem egyértelmű

Vándorgyűlés '19, Sopron Vértesi Róbert - Nehéz kvarkok az ALICE kísérletnél

Λ_{c}^{0}/D nehézion-ütközésekben

- Pb-Pb ütközések esetén a pp-nél magasabb Λ_c+/D⁰ arányra utaló jel
 - pp, pPb, Pb-Pb adatok: az ütköző rendszer méretétől való függés a jelen pontosság mellett nem egyértelmű
- A koaleszcenciát és fragmentációt tartalmazó Catania modell leírja a Pb-Pb ütközésekben megfigyelt Λ_c⁺/D⁰ arányt

Összefoglalás

QCD vákuum: pp ütközések \sqrt{s} =5, 7, 8 és 13 TeV energián

- D-mezonok, nehéz kvarkból származó leptonok, jetek:
 - A hatáskeresztmetszeteket a pQCD modellek leírják. Az elméletek bizonytalansága meghaladja a kísérletit
- Barionok és mezonok aránya: új mechanizmusok szükségesek
 - Ütközési rendszertől függő nehézkvark-fragmentáció?

Összefoglalás

QCD vákuum: pp ütközések \sqrt{s} =5, 7, 8 és 13 TeV energián

- D-mezonok, nehéz kvarkból származó leptonok, jetek:
 - A hatáskeresztmetszeteket a pQCD modellek leírják. Az elméletek bizonytalansága meghaladja a kísérletit
- Barionok és mezonok aránya: új mechanizmusok szükségesek
 - Ütközési rendszertől függő nehézkvark-fragmentáció?

Maganyag-módosulás $\sqrt{s_{NN}}$ =5.02 TeV-es p-Pb ütközésekben

- A hideg maganyag nem módosítja jelentősen a D mezonok, nehézkvark-elektronok vagy a jetek hozamát
- Nem zárható ki a forró maganyag keletkezése sem

Összefoglalás

QCD vákuum: pp ütközések \sqrt{s} =5, 7, 8 és 13 TeV energián

- D-mezonok, nehéz kvarkból származó leptonok, jetek:
 - A hatáskeresztmetszeteket a pQCD modellek leírják. Az elméletek bizonytalansága meghaladja a kísérletit
- Barionok és mezonok aránya: új mechanizmusok szükségesek
 - Ütközési rendszertől függő nehézkvark-fragmentáció?

Maganyag-módosulás $\sqrt{s_{NN}}$ =5.02 TeV-es p-Pb ütközésekben

- A hideg maganyag nem módosítja jelentősen a D mezonok, nehézkvark-elektronok vagy a jetek hozamát
- Nem zárható ki a forró maganyag keletkezése sem

Forró közeg: $\sqrt{s_{NN}}$ =5.02 TeV Pb-Pb ütközések

- Energialeadás
 - Nagy impulzusoknál nincs tömeg szerinti rendezés: R_{AA}^π≈R_{AA}^D
 - Alacsonyabb p_T -nél megfigyelhető a rendezés : $R_{AA}^{b \rightarrow e} > R_{AA}^{b,c \rightarrow e}$
- Kollektivitás és koaleszcencia:
 - Alacsony p_T-s R_{AA} és D_s-képződés: közeggel való koaleszcencia
 - Jelentős azimutális anizotrópia $\rightarrow v_2 \& R_{AA} szimultán leírása kihívás$

- Lényegesen jobb nyomkövetési hatásfok és felbontás
- Detektorfejlesztések: ITS, TPC, MFT, FIT
- Gyorsabb, folyamatos kiolvasás a jelenlegi triggerek helyett

ELFT Fizikus Vándorgyűlés, Sopron, 2019 augusztus 21-24

Vértesi Róbert - Nehéz kvarkok az ALICE kísérletnél

Charm-tartalmú barionok: Λ_c^+ és Ξ_c

- Első Ξ_c mérés az LHC-nél
- Új, pontos Λ_{c}^{+} mérés
 - A A_c⁺ keletkezését alulbecslik a modellek

Másodlagos vertex keresése - ITS

- Félvezető technológia
- Másodlagos vertex észlelése

Nehéz kvarkok élettartama: $c\tau(D) \sim 100-300 \text{ mm}$ $c\tau(B) \sim 400-500 \text{ mm}$ Másodlagos vertex felbontása: <100 mm

Vertextávolság szignifikanciája (jet)

Vértesi Róbert - Nehéz kvarkok az ALICE kísérletnél

Charm jets in pp and p-Pb collisions

- New D-jet measurements down to $p_T^{jet} = 5 \text{ GeV}/c$
- POWHEG+PYTHIA6 (Perugia11) describes data within uncertainties
- Data provides strong constraints on theory!

==> Unique oportunity to study charm jet properties Baseline for future Pb-Pb measurement (jet modification)

p-Pb: centralitásfüggő módosulás

- D-mezon Q_{pPb} konzisztens 1-gyel centrális és periférikus esetben is
 - Szintén konzisztens a töltött hadronokkal mindkét esetben
- Az arányok eltérő centrális és periférikus módosulásra utalnak (Q_{CP})
 - Valószínű kollektivitás kis rendszerekben (radiális folyás)
 - Kezdeti- és végállapotok szintén szerepet játszhatnak (pl. többszörös szórások)
 - Megjegyzés: az interpretációt nehezíti a centralitásdefiníciók mintatorzító hatása. (Viszonylag kicsi a ZN-centralitás esetében)

Vértesi Róbert - Nehéz kvarkok az ALICE kísérletnél

Hozamok a multiplicitás függvényében

 A D mezonok és a müonok hozama az eseménymultiplicitás függvényében lineárisnál meredekebben emelkedik

D-mezonok multiplicitásfüggő hozama

Perkolációs modell - PRC 86 (2012) 034903

- Target-projektil színcsere (sokparton-kölcsönhatáshoz hasonló)
- Lineárisnál meredekebb emelkedés

EPOS 3.099+Hydro - PRC 89 (2014) 064903

- Gribov-Regge formalizmus
- Mult.függő sokparton-kölcsönhatás
- Lineárisnál meredekebb emelkedés

PYTHIA8 - Comp.Phys.Commun. 178 (2008) 852

- SoftQCD szín-újrarendezéssel (CR)
- Sokparton-kölcsönhatás (MPI)
- Kezdeti és végállapoti gluonsugárzás
- Lineáris növekedés
- A D mezonok és a müonok hozama az eseménymultiplicitás függvényében lineárisnál meredekebben emelkedik
- A sokparton-kölcsönhatást (MPI) vagy hasonló mechanizmust tartalmazó modellek reprodukálják a trendet