Opportunities and Challenges with Jets at LHC and beyond, CCNU 10/6/2018

Multiplicity-dependent jet modification in p+p collisions at **LHC energies**

arXiv:1805.03101

Róbert Vértesi

vertesi.robert@wigner.mta.hu

GNC **Zoltán Varga Gergely G. Barnaföldi**

Supported by: NKFIH/OTKA K 120660 grant; János Bolyai scholarship of the Hungarian Academy of Sciences; MOST-MTA Chinese-Hungarian Research Collaboration

Motivation

- High-multiplicity p+p at LHC energies: unexpected findings
 - Long-range correlations
 - Substantial v_n (comparable to that in HI with same multiplicity) eg. L. Yan, J. Y. Ollitrault, PRL 112, 082301 (2014).
 - Stronger-than-linear dependence of HF production with event multiplicity

ALICE Collaboration, JHEP 1608, 078 (2016).

- Current understanding:
 - Collectivity can arise from features other than QGP
 - Pure QCD can generate it at the soft-hard boundary
 - Eg. in the form of Multiple Parton Interactions (qualitatively explain HF enhancement)

S. Schlichting, arXiv:1601.01177

Effect on jets

- Jet modification as a key QGP signature what about pp?
 - Features in pp traditionally associated by QGP questions the role of pp as a reference
 - Jet quenching is not excepted without QGP in a larger volume, but...
 - The development of jets may be influenced by semi-hard processes such as MPI

Is there a way to test it?

Look for nontrivial modification of jet structures

Our study: Simulation and jet reco.

- pp collisions at $\sqrt{s} = 7 \text{ TeV}$
- Simulation with PYTHIA 8.2
 - CTEQ6.6 PDF sets, all hard QCD processes
 - Tunes:
 - Monash (as default) tuned for a large set of LHC data
 - Monash* former CUETP8M1, based on underlying events)
 - 4C a different tune based on key LHC observables and UE observables
 - Multiple Parton Interactions: on and off
 - Color Reconnection schemes:
 0: MPI-based scheme (default in PYTHIA and our study),
 1: QCD-based string length minimisation scheme,
 2: gluon-move scheme.
 off: we don't use it.

Full jet reconstruction with R=0.7 (using standalone FastJet)

- anti- k_{T} algorithm (default in this study)
- Cambridge-Aachen algorithm
- $k_{\rm T}$ algorithm

Jet shape measurables

Differential jet shape

$$\rho(r) = \frac{1}{\delta r} \frac{1}{p_{\mathrm{T}}^{\mathrm{jet}}} \sum_{r_a < r_i < r_b} p_{\mathrm{T}}^i$$

$$r_i = \sqrt{(\phi_i - \phi_{jet})^2 + (\eta_i - \eta_{jet})^2}$$

p(r)

Integral jet shape

$$\Psi(r) = \frac{1}{p_{\mathrm{T}}^{\mathrm{jet}}} \sum_{r_i < r} p_{\mathrm{T}}^i$$

$$\psi(R) = \int_0^R \rho(r') dr' = 1$$

CMS, JHEP 06, 160 (2012).

Validation: compare to CMS data

- The three different "stock" tunes reproduce CMS |y|<1 p+p data at 7 TeV within uncertainty
- Between $15 < p_T < 400 \text{ GeV}/c$ (3 examples shown)
 - Note: our setup (acceptance, jet reco. etc) follows the CMS analysis

Event charged multiplicity (at mid-η)

- The three different "stock" tunes show similar multiplicity dependences (all tuned to describe data)
- A rising trend with p_{T} (expected)

Event charged multiplicity (at mid-η)

- Different CR-schemes also yield similar N_{ch} distributions
- MPI:off and CR:off are nonphysical settings
 - MPI:off (no CR) yields less multiplicity on the average
 - CR:off (with MPI:on) yields more

Jet structure for different multiplicities

- Multiplicity dependence of differential jet shape ρ(r)
 - P_{any-Nch}≡ρ_{MB}; P_{low-Nch}; P_{high-Nch}
 Note: MB "minimum bias" just means no selection on mult./cent.
 contains certain biases introduced by the p_T selection,
- This is the expected, trivial behavior:
 - Event N_{ch} correlates with jet multiplicity, that correlates with $\rho(r)$
 - Lower-multiplicity jets are more concentrated than higher-mult jets

Evolution of structure: ratio to MB

- Multiplicity dependence of jet shape ratios to MB:
 - Curves are ρ_{low-Nch}/ρ_{MB}; ρ_{high-Nch}/ρ_{MB}
- Intersection of the two curves at unity (trivial for two curves)
- Evolution with p_{T} : higher-momentum jets are narrower

More multiplicity classes

- All curves intersect at a given point
- This is non-trivial -> a given ratio R_{fix}
- Evolution with p_T ?
- How strongly does it depend on simulation settings?

R_{fix} versus jet momentum

- Toy model to understand $R_{fix}(p_T)$ evolution
 - Jet consisting of particles with equal momenta p₀,
 - Boosted toward the jet axis with p_{boost}
- High- p_T : qualitatively similar behaviour to the MC
- Low-p_T : blow-up not expected in data because jet reconstruction is limited by R and also angular cut-off in splitting

R. Vértesi - Jet structure vs. multiplicity

R_{fix} - is it universal?

- R_{fix} does not depend on... (within uncertainties)
 - The choice of PYTHIA tune (Monash, Monash*, 4C)
 - CR schemes or even whether CR or MPI are on/off. Note: MPI:off is very different physics, different UE
 - Clustering algorithm (k_T, anti-k_T, Cambridge-Aachen)
 These algorithms create very different jets

Will it hold in Heavy lons?

Tune comparison: deviations vs. p_T

- Comparing p_{high-Nch}/p_{low-Nch} ratios for different tunes
- Double ratio (given p_T)
 - Trivial multiplicity bias cancels
 - We find a significant effect at given p_T jet windows
 - Effect can be as large as a factor of 2!
- Dependence on p_T complicated $RSD = \sqrt{\sum_{0 < r_i < R} (DR(r_i) 1)^2}$

$$DR(r) = rac{(
ho_{low}/
ho_{high})}{(
ho_{low}/
ho_{high})_{ref.tune}}$$

Tune comparison, varied N_{ch}-bin pairs

- Deviations are present in many {N_{ch}-low, N_{ch}-high} pairs
 Statistically independent samples => not accidental fluctuations!
- Extent of deviation is larger for more distant N_{ch} pairs

Predictions can serve as sensitive model tests

Integrated jet shapes vs. N_{ch} (r=0.2)

- No significant difference for 3 "stock" tunes or CR schemes
- MPI:off case is significantly different at high N_{ch}
 - not explained by the sizeable bin shift effect

Modification of jet structures by MPI

Word of caution: effect can (partly) come from modified UE

Conclusions and outlook

- Multiplicity-differential jet structure measurements in pp collisions at LHC energies are sensitive tests of MC models
 - A way to differentiate between otherwise well-performing models
 - Data up to high p_T would be essential
- We see a non-trivial modification of the jet shapes by multiple parton interactions
 - The role of underlying events should be clarified
 - We are extending our study to less UE-sensitive observables
 - Studies with heavy-flavor jets are underway
- We suggest a multiplicity-independent jet size measure
 - Modification of R_{fix} in heavy-ion collisions may be tell-tale
 - Moving to event generators with medium effects (HIJING++)

...so please stay tuned :)

Opportunities and Challenges with Jets at LHC and beyond, CCNU 10/6/2018

TATIL DOT DOT

Thank you!

Acknowledgements:

Yaxian Mao Jana Bielčíkova Miklós Kovács

Supported by: NKFIH/OTKA K 120660 grant; János Bolyai scholarship of the Hungarian Academy of Sciences; MOST-MTA Chinese-Hungarian Research Collaboration

Correlations and v₂

W. Li, arXiv:1704.03576, to appear in NPB

h-h correlations, near-side Gaus+p2 fit

Miklós Kovács, BSc. Thesis, Budapest University of Technology and Economics (2018)

- Peak mostly includes fragmentation components,
- Long-range initial stage is in the parabolic backgound
- Broadening by MPI moderate

h-h correlations, near-side Cauchy fit

Miklós Kovács, BSc. Thesis, Budapest University of Technology and Economics (2018)

- Peak includes early-stage and fragmentation components
- Sizeable broadening by MPI

CMS 2j+2b dijet azimuthal angle Δ S

CMS, PRD94, 112005 (2016)

- Sensitive to MPI
- Robust regarding UE, choice of simulations

R. Vértesi - Jet structure vs. multiplicity

p_T^{jet} spectum and choices of p_T[^]min

p^T_{jet} spectra with different values of p_T[^]_{min}

choices of p_T[^]_{min} for given p_{Tjet} windows used in the analysis

p_t^{jet}	<i>p</i> _t
20 - 25	$5 \leq$
30 - 40	$5 \leq$
50 - 60	$20 \leq$
70 - 80	20 <u><</u>
90 - 100	$40 \leq$
110 - 125	$40 \leq$
140 - 160	\geq 08
180 - 200	\geq 08
225 - 250	\ge 08