Study of Angular Correlations in Monte Carlo Simulations

Balázs Endre Szigeti¹²

Advisor: Mónika Varga-Kőfaragó²

¹Eötvös Loránd University

²Wigner Research Centre for Physics

- Heavy-Ion Collision
- Goal: study interaction of jets with medium
- Angular Correlations represent a powerful tool to study jets
 - where jet quenching effects expected to be large
 - in an energy region where jets cannot be identified event-by-event
- ALICE results: jet broadening, depletion
- MC Simulations with different physical background

- The direction of the produced particles are correlated
- Trigger and associated particles
- Particle momenta represented by
 - Pseudorapidity (η)
 - Azimuth angle (arphi)
- $(\Delta \varphi)$ and $(\Delta \eta)$ differences
- Associated yield per trigger:

• $\frac{1}{N_{trigger}} \frac{d^2 N_{assoc}}{d\Delta \varphi d\Delta \eta}$

• (identified)hadron-(identified)hadron, jet-hadron, hadron-jet, lepton-hadron, etc.

Same and Mixed event

- The associated yield per trigger is expressed in terms of the ratio of the same and mixed event
- In the ratio the detector acceptance effects disappear

 $\begin{array}{c} 1 & 0.5 & 0 \\ & 4\eta & -0.5 & -1 & -1.5 & -2 \\ \end{array}$

Balázs Endre Szigeti

 $\begin{array}{c} 2 \\ 2 \\ 4 \\ \eta \end{array} 1.5 \\ 1 \\ 0.5 \\ 0 \\ -0.5 \\ -1 \\ -1.5 \\ -2 \\ -1 \end{array} -1$

¹¹⁸⁰ арабо []14 ੇ ਵਿ100

2

1.5

°₃ <u></u>≹®

2

0

Associated yield per trigger

• Associated yield per trigger:

- Useful tool
 - to study flow and jets
 - to study soft and hard process

Associated yield per trigger

• Associated yield per trigger:

Useful tool

- to study flow and jets
- to study soft and hard process

Associated yield per trigger

• Associated yield per trigger:

- Useful tool
 - to study flow and jets
 - to study soft and hard process

ALICE Results¹

¹[The ALICE Collaboration; Phys.Rev.Lett. 119. (2017)]

Study of Angular Correlations in Monte Carlo

Fitting methods

Fit the jet shape with a Generalised Gaussian:

•
$$G_{\gamma_x,\omega_x}(x) = rac{\gamma_x}{2\omega_x\Gamma(1/\gamma_x)}exp\left[-\left(rac{|x|}{\omega_x}
ight)^{\gamma_x}
ight]$$

 $\bullet\,$ The $\sigma_{\Delta\varphi}$ and $\sigma_{\Delta\eta}$ variance values characterise the jet shape

AMPT

- Developed for heavy-ion collisions
- Based on Hijing
- Collective effects, ZPC
- String Melting and Default mode
- Cluster-, and string hadronization
- Language: fortran77

AMPT String Melting Off, ART Off

No centrality dependence in $\Delta \varphi$, no particle species dependence

• • • • • • • • •

-

.∋...>

AMPT String Melting Off, ART Off II.

$\sigma_{\Delta\eta}$ variances:

Strong centrality dependence in $\Delta\eta,$ and strong particle species dependence

-

AMPT String Melting Off, ART On

There is a centrality and species dependence in $\Delta \varphi$

- 一司

ъ.

AMPT String Melting Off, ART On II.

$\sigma_{\Delta\eta}$ variances:

Centrality dependence in $\Delta \eta$, and a hint of particle species dependence

- ∢ 🗗 ▶

-

AMPT String Melting Off, ART On III.

Depletion Yield:

Strong centrality and dependence species dependence in the Depletion Yield

A D > A A P >

To summarise:

- Angular correlations are useful tool to study jets and flow.
- Fit the jet shape with a Generalised Gaussian
- No depletion yield without hadronic rescatterings
- Strong centrality dependence in both case
- A particle dependence in both case

Future plans:

- Different MC simulations: JetScape, Hijing++, EPOS 3.216
- Data and Monte-Carlo Simulation Comparison

Thank you for the Attention!

三日 のへの

<ロト < 団ト < 団ト < 団ト

