A High-Granularity Digital Tracking Calorimeter Optimized for Proton CT

Ákos Sudár (Wigner RCP, BME) Mónika Varga-Kőfaragó, Gergely Gábor Barnaföldi (Wigner RCP) and Róbert Kovács (BME, Wigner RCP)

> on behalf of Bergen proton CT collaboration (full collaboration list)

Ref: Front. in Phys. Med. Phys. Im. ID: 568243, Phys. in Med. & Bio. ID: 110623.R3, NIM A 860 (2017) 51–6152, Phys. Med. 63 (2019) 87–97

Zimányi School Winter Workshop 2020, 9. December 2020.

Advantages of proton therapy

- Original idea by Wilson in 1946
- Widespread in the last 20 years
- More advantageous dose distribution due to Bragg-peak
 ⇒ less side effect

Relative stopping power distribution

Patient

Relative stopping power distribution

Patient

Image

Relative stopping power distribution

Bergen pCT Collaboration

General design of the digital tracking calorimeter

Incoming vector

and energy

Energy deposit in the patient

Incoming vector

and energy

Energy deposit in the patient

General pCT concept – Tracker layers

- 10⁷ proton/s and 5µs frame time must be handled
 ⇒ ALPIDE silicon pixel detector developed by ALICE, CERN
- Trigger less readout architecture \Rightarrow fixed frame time
- Accurate path reconstruction
 - \Rightarrow carbon-composite support layer
 - \Rightarrow 50 mm between the tracker layers
- **Radiation** must not damage nor critically interfere with the operation of the detector
- Minimize the noise and uncertainties

General pCT concept – Calorimeter layers

- Tracker detectors in calorimeter layers
 ⇒ fast and use the same readout electronics
- Absorber and support layer with minimal scattering
 Aluminum: low scattering and good support material
- To avoid oscillation error 3.5 mm absorber thickness
- $\bullet~41$ absorber layer to stop a 230 MeV/u proton beam

Clinically-oriented investigations & results

(Test beam setup and clinical Monte Carlo studies)

Test beam setup

Parameters:

- Energies 50-220 MeV/u
- Particle rate 15-145 kHz
- $\bullet~{\rm Beams:}~{\rm p,}~\alpha^{2+},{\rm c}^{6+}$

Measurements:

- Cluster evolution
- Cluster size energy deposit
- Tracking efficiency
- Cluster size different cluster occupancy
- Discriminate different type of particles

Cluster size and the deposited energy

Monte Carlo model

Monte Carlo model

Rate of correctly reconstructed tracks

Rate of correctly reconstructed tracks

Rate of correctly reconstructed tracks

Monte Carlo model

MC - Error of the Relative Stopping Power

CTP404 phantom: seven materials for RSP error investigations

24 / 29

MC head imaging

Summary and outlook

Summary – Accuracy and performance

• Accurate relative stopping power: 0.4% (MC simulation) < required 1%

- 10⁷ proton/s (MC simulation)
 ⇒ pCT image in less than a minute
 ⇒ maybe clinical testing will be possible
- Clear image
- Free of artifacts

- Under construction, tests within 2 years
- Ongoing component tests

Outlook - In vivo dosimetry

Goal: measuring the proton range

Thank you for your attention!

Members of the Bergen pCT collaboration: University of Bergen, Norway; Helse Bergen, Norway; Western Norway University of Applied Science, Bergen, Norway; Wigner Research Center for Physics, Budapest, Hungary; DKFZ Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Germany; Utrecht University, The Netherlands; RPE LTU, Kharkiv, Ukraine; Suranaree University of Technology, Nakhon Ratchasima, Thailand; China Three Gorges University, Yichang, China; University of Applied Sciences Worms, Germany; University of Oslo, Norway; Eötvös Loránd University, Budapest, Hungary

This work would not be possible without the support of the Research Council of Norway (Norges forskningsråd), grant number 859 250858; the Trond Mohn Foundation, grant number BFS2017TMT07; NKFIH/OTKA K120660 and K135515, Hungarian Scientific Research Fund – OTKA.

Backup slides

Imaging for the treatment plan of a proton therapy

- Hounsfield Unit (HU): linear attenuation coefficients in a scale which assigns 0 to water and -1000 to air
- Relative Stopping Power (RSP): the stopping power compared with water
- RSP map is necessary for treatment planning
- Nowadays:

X-ray CT \rightarrow measures HU unit \rightarrow RSP distribution 1.7-11% RSP error \Rightarrow bigger safety zone \Rightarrow less advantages proton Therapy

• More accurate option:

 $\begin{array}{l} \mbox{Proton CT} \rightarrow \mbox{direct measurement of RSP distribution} \\ 0.5{\text -}1\% \mbox{ RSP error} \Rightarrow \mbox{reduced safety zone} \\ \Rightarrow \mbox{more advantages proton Therapy} \end{array}$

Previous prototype of the group - Concept

Sandwich structure:

- MIMOSA23 sensors (developed in ALICE-FoCal)
 2 kHz readout speed
- 3.3 mm tungsten absorber

Layer length: 32 mm WET WET: Water Equivalent Thickness Originally designed for other purpose \Rightarrow 24 layers but just 7 useful 38.5 · 38.3 mm² sensitive area New prototype:

- MIMOSA23 \rightarrow ALPIDE
- Optimized absorber

Previous prototype of the group – Results

- 4% range resolution caused by the too thick absorber goal is 1% for prototype pCTs
- 1 MHz effective proton frequency high end of the prototype pCTs

