Multiplicity dependence of the jet structure in small systems at LHC energies _{Wigner Seminar}

Zoltán Varga^{ab} and Róbert Vértesi^a

^a Wigner RCP, Budapest, Hungary
 ^b Budapest University of Technology and Economics

26 March 2018

Multiplicity dependence of the jet structure in small systems at LHC energies

▲ @ ▶ ▲ @ ▶ ▲

Motivation

- "Traditional" picture after the RHIC results: QGP signatures in A+A collisions.
 - Jet quenching; strongly interacting matter modifies jets.
 - Elliptic flow (v₂): strongly coupled QGP develops hydrodynamical behaviour.
- Suprise at LHC energies: v₂ and long-range correlations in high-multiplicity p+p events;
 - *v_n* generally governed by multiplicity. Interpretation is problematic.
 - Flow patterns can be (partly) understood by pure QCD rather than hydro.
 - HF multiplicity vs. event activity shows that p+p events are not trivial. This suggests that the role of MPI can be important.

Our motivation

- Recent findings of heavy ion-like phenomena in high-multiplicity p+p collisions.
- The QCD effects in high-multiplicity p-p such as MPI may cause experimentally accessible modification of jet shapes.

- We are looking for non-trivial jet shape dependence on event multiplicity.
- We provide means to validate simulations and help setting the baseline for jet modifications incheavy ions.

Introduction

- We are simulating p+p collisions at $\sqrt{s} = 7$ TeV.
- Monte Carlo event generator: PYTHIA 8.2 with default PDF sets.
- Jet reconstruction: Fastjet software package with anti-k_t algorithm.
- Full jet reconstruction with R = 0.7. ($R^2 = \Delta \phi^2 + \Delta \eta^2$)

Different tunes and settings

- Tunes: Monash, Monash*, 4C.
- Multi parton interactions (MPI).
- Colour reconnection (CR): In PYTHIA this is an in-built mechanism that allows interactions between partons originating in MPI and initial/final state radiations, by minimizing color string lengths.
 - 0: MPI-based scheme,
 - 1: QCD-based string length minimisation scheme,
 - 2: gluon-move scheme.
 - off: we don't use it.

Differential and integral jet shapes

Differential jet shape:

Integral jet shape:

A reality check: Comparison with CMS for $\rho(r)$

 Different tunes reproduce CMS data within uncertainty.
 We investigated different p_t^{jet} windows between (15 - 400) GeV.

э

(日) (同) (三) (三)

Event Nch multiplicity distribution for the tunes

All tunes show similar event Nch distributions.

э

< 🗇 🕨 🔸

Event Nch multiplicity distribution for the settings

- All tunes show similar event Nch distributions.
- But huge differences between different settings!
- Colour reconnection schemes do not differ much.

$\rho(r)$ distribution for different tunes

- We see a multiplicity dependence in the jet shapes,
- but it is the trivial multiplicity dependence we expected.

э

An intersection

 The two low- and high-multiplicity curves intersect each other at unity.

A B > A
 B > A
 B
 A

- The interception point depends on the p_t^{jet} .
- What happens for different multiplicities?

э

э

A characteristic jet size measure?

- The intersection does not depend on our bin choice.
- Our finding: it is also independent from tunes and settings!

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Could this r be a characteristic jet size?

The p_t^{jet} dependence of the *r* "fix point"

- Good agreement between tunes and settings.
- It is a characteristic jet size at a given p_t^{jet}. Or is it some trivial effect?
- Is it an artefact of our jet reconstruction algorithm?

The p_t^{jet} dependence of the *r* "fix point"

- Good agreement between tunes and settings.
- This "characteristic jet size" is independent of the three jet reconstruction algorithms.

э

A toy model

- Jet consisting of particles with equal momentum p_0 .
- We boost with a certain momentum p_{boost} towards the jet axis.
- High-p_T: qualitatively similar behaviour of the characteristic jet size with respect to p_{boost}.
- Low-p_T: blow-up is not expected in data because jet rec. is limited in R and because of angular cut-off in splitting.

Applying a double ratio for $\rho(r)$

・ロン ・回 と ・ ヨン・

3 x 3

Applying a double ratio for $\rho(r)$

- Trivial multiplicity bias cancelled out.
- We find a significant effect at a given p_t^{jet} windows.
- Non-trivial dependence on p_t^{jet}, origin of the effect needs further investigation.

Double ratio for different multiplicity bins

- Same calculations for several different multiplicity bins.
 The effect is larger as the separation in multiplicity is larger.
- Statistically independent samples \rightarrow not fluctuations.

Relative squared deviations

The nature of the p_T^{jet} dependence is independent of the chosen multiplicity bin.

$\psi(r = 0.2)$ dependence on multiplicity

- No observable effect in integral structure between different tunes.
- Turning off MPI causes significant differences within the same multiplicity class,
- which suggests MPI has an influence on jet structure.

Summary

- We computed several jet structure observables in $\sqrt{s} = 7$ TeV p+p collisions using PYTHIA 8.
- Jet structures measured by CMS are reproduced by our simulations.
- Predictions for multiplicity-dependent jet structures are given.
- We suggest a multiplicity-independent jet size measure.
- Multiplicity-dependent experimental jet-structure analyses could differentiate between otherwise well-performing models.
- Studies concerning heavy-flavour-tagged jets are under way.

Thank you for your attention!

A ► <

3 →

Multiplicity dependence of the jet structure in small systems at LHC energies

э

Backup

・ロッ ・回 ・ ・ ヨッ ・

Multiplicity dependence of the jet structure in small systems at LHC energies

문 문 문

p_t^{jet} distributions for different $\hat{ ho}_t$

p_t^{jet}	$\hat{p_t}$
20 - 25	$5 \leq$
30 - 40	$5 \leq$
50 - 60	$20 \leq$
70 - 80	$20 \leq$
90 - 100	$40 \leq$
110 - 125	$40 \leq$
140 - 160	$80 \leq$
180 - 200	$80 \leq$
225 - 250	$80 \leq$

- イロト イロト イヨト イヨト 一日 - シスで

$\rho(r)$ double ratio figure: 1/6

$\rho(r)$ double ratio figure: 2/6

$\rho(r)$ double ratio figure: 3/6

$\rho(r)$ double ratio figure: 4/6

$\rho(r)$ double ratio figure: 5/6

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > 目 の Q @

$\rho(r)$ double ratio figure: 6/6

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Significant difference between MPIoff-CRoff and CRoff

