Collective behaviour in small collision systems measured by ALICE at the LHC

Gyula Bencedi¹ for the ALICE Collaboration

Introduction

The interpretation of heavy-ion (AA) results depends on the outcome of the corresponding control measurements in proton-proton (pp) and proton-nucleus (pA) collisions, where the system size and the produced number of particles are relatively small and final state effects (attributed to the hot and dense QCD medium) are not expected to be present.

However, recent results from different measurements at the LHC (ALICE, CMS, ATLAS) in high multiplicity pp and p-Pb collisions revealed QGP-like effects (flow-like patterns and long range angular correlations [1]).

Beside the application of hydrodynamical calculations in the description of the observed phenomena,

Particle Identification in ALICE

models, which do not require the formation of the hot and dense QCD medium, also can give meaningful predictions. For example, long range angular correlations can be produced in the framework of Color Glass Condensate [2], which is also able to reproduce the anisotropic flow coefficients. In addition, it has been shown, that in PYTHIA flow-like effects can be produced via boosted strings [3].

In heavy ion collisions the p_{τ} distributions of identified hadrons carry information about the collective expansion of the system. In this work we study the evolution of the spectral shapes of identified hadrons as a function of event multiplicity, N_{ch} , in pp and p-Pb collisions.

Particle Identification (PID) is done using the central barrel detectors in ALICE (**Fig.1**). ALICE has unique PID capabilities, among the other LHC experiments, to identify hadrons in a broad $p_{\rm T}$ range.

N_{cb} was measured using the VOA detector of ALICE, which is a small angle detector consisting of scintillator counters and installed on the "A" side (Pb-going side) of the ALICE interaction point.

Fig.1 Schematic view of ALICE at the LHC.

Fig.2 The specific energy loss as a function of momentum p in the Inner Tracking System (ITS).

Fig.3 Specific energy loss dE/dx as a function of momentum ρ in the Time Projection Chamber (TPC).

Fig.4 Velocity of particles as a function of *p* measured by the Time Of Flight detector (TOF)

ALICE

PID approaches^[5]

Three approaches are used for the identification of $\,\pi^{\pm}$, K^{\pm} and $\,p(ar{p})\,$, called "ITS standalone", "TPC/TOF" and "TOF fits". **Tab. 1** shows the corresponding p_{τ} reach for each approach.

In addition, K^0_s and $\Lambda(\bar{\Lambda})$ particles were reconstructed using their V^0 decay topology in the channels $K_s^0 \to \pi^+\pi^-$ and $\Lambda(\Lambda) \to p\pi^-(\bar{p}\pi^+)$.

ITS standalone (ITSsa)

TPC/TOF

TOF fits

species is calculated in each layer based on the measured energy loss signal and the known response function. The information from all layers is combined in a Bayesian approach and the type with the highest probability is assigned to the track.

time-of-flight are within $\pm 3\sigma$ TPC and/or TOF. For lower p_{τ} only the TPC is used.

probability for each particle. In this region a track-by-track ID is. In this method the time distribution possible by requiring that the of the time of flight is fitted to measured d*E*/d*x* of the particle and extract the particle yields, with the expected shapes based on the from the expected values in the knowledge of the TOF response function for different particle species.

Tab.1 p_T ranges in the different analyses (GeV/ c)			
Analysis	π	Κ	р
ITSsa	0.1 - 0.7	0.2 - 0.6	0.3 - 0.65
TPC/TOF	0.2 - 1.5	0.3 - 1.3	0.5 - 2.0
TOF fits	0.5 - 3.0	0.5 - 2.5	0.5 - 4.0

Results and discussion

Average transverse momentum $< p_{T} > versus N_{ch}$

Indication of flow patterns in p-Pb

• In pp collisions the average transverse momentum as a function of charged particle multiplicity (N_{ch}) shows change in slope at the value of $N_{ch} \approx 10$.

- PYTHIA (with color reconnection [9]) and EPOS (collective effects via parametrization) captures the observed behaviour of $\langle p_T \rangle$ vs. N_{ch} in pp.
- In p-Pb collisions the $\langle p_T \rangle$ follows pp up to $\approx 14 N_{ch}$. For $N_{ch} > 14$ it saturates at smaller values than in pp. This behaviour cannot be described by a superposition of individual pp collisions.
- EPOS describes the p–Pb data assuming collective flow.
- Pb-Pb data shows only a moderate increase of $< p_{T} >$ with N_{ch} .

(4) Hydrodynamic models can describe the observed

effects in smaller systems, but models, where the

formation of the hot and dense QCD medium is not

needed, might also show good qualitative description

- The p_{T} spectra in high multiplicity pp and p-Pb collisions show a clear evolution with multiplicity [5]; this effect is well known from heavy ion collisions.
- In heavy ion collisions the flattening of the p_{τ} spectra and its mass ordering (due to the collective radial expansion of the system) as a function of multiplicity can be tested using the blast-wave model [6].
- For the 5-10% VOA multiplicity class, models, e.g. the Kraków hydrodynamic model, reproduce the kaon and pion spectra fairly well below 1 GeV/*c*.
- A deviation for higher p_{τ} might show the limit of hydrodynamical models. The data could indicate the onset of a non-thermal (hard) component, which in more peripheral collisions is not thermal
- Models incorporating final state effects, such as

• In p-Pb data there is a presence of flow-like effects – in Pb-Pb strong radial flow is observed [7]. • At similar $dN_{ch}/d\eta$ p-Pb and Pb-Pb systems show similar T_{kin} , but p-Pb has larger radial flow $<\beta_{T}>$ – this could be explained as a consequence of the selection bias of harder events.; howerver, in [8] this observation was suggested as a consequence of stronger radial gradients.

- $< p_{T} >$ shows an increase with multiplicity, which is stronger for heavier particles.
- A similar mass ordering was observed in pp and Pb-Pb collisions as a function of multiplicity.

(1) Long range angular correlations were observed in high multiplicity pp and p-Pb

(2) To gain further insight into these effects, the evolution of the spectral shapes

(3) Flow-like effects have been also observed in data, but the origin of the effects

of identified particles with event multiplicity in pp and p-Pb collisions has

ratios and its multiplicity dependence for $pT \leq 1$ GeV/c is a feature of radial flow.

of the data.

• In p-Pb collisions similar behaviour is observed.

Conclusions

• PYTHIA8 [9] (with color reconnection) can mimic radial flow.

References

[1] ALICE Phys.Lett. B719 (2013) 29–41 [2] Phys. Lett. B 747 (2015) 76-82 [3] Phys. Rev. Lett. 111, 042001 [4] ALICE Phys. Lett. B 727 (2013) 371-380 [5] ALICE Phys. Lett. B 728 (2014) 25-38

[6] Phys. Rev. C 48, 2462 (1993) [7] Phys. Rev. Lett. 109 (2012) 252301 [8] Phys.Rev. C88 (2013) 4, 044915 [9] Phys. Rev. D 82 (2010) 074018

Acknowledgement

The work is supported by the Hungarian OTKA grant NK106119, Wigner RCP Travel Grant, DGAPA-UNAM under PAPIT grant IA102515 and the EPLANET founding.

collisions.

been studied.

is not clear.

¹Wigner Research Centre for Physics, Hungarian Academy of Sciences Gyula.Bencedi@cern.ch

