TSALLIS-LIKE FRAGMENTATION FUNCTIONS FOR HIGH ENERGY COLLISIONS

Ádám Takács^{1,2} and Gergely Gábor Barnaföldi²

¹Institute of Physics, Eötvös University, Budapest, Hungary ²Wigner Research Centre for Physics of the H.A.S., Budapest, Hungary

Motivation

To predict measurable quantities in any model, hadrons are needed. The process, when quarks and gluon confine into hadrons is the **hadronization**, which is unresolved problem.

Methods to describe the formation of hadronic final states in high-energy collisions.

- Freeze-out, like the Cooper–Frye formula in hydrodynamics
- Dynamical fragmentation, like the Lund Model in MC generators
- Recombination or quark coalescence models
- Statistical fragmentation, such as the Feynman–Field Model

Fragmentation function D_i^h , describes the probability of a parton i forms a hadron h. This non-perturbative process is formulated phenomenological and parametrized in e^-e^+ annihilation.

At leading order (LO), $e^- + e^+ \rightarrow h + X$ spectra is calculated by

$$\frac{\mathrm{d}\sigma(e^-e^+ \to hX)}{\mathrm{d}z} = \sum_i \sigma_0^i(s) D_i^h(z, Q^2), \tag{1}$$

where σ_0 is the partonic $2 \rightarrow 2$ cross section, energy scale is $Q = \sqrt{s}/2$ and the energy fraction is $z = E_h/Q$.

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation provides the scale evolution of the fragmentation functions at any Q values

$$\frac{\mathrm{d}D_i^h(z,\mu)}{\mathrm{d}\log Q^2} = \sum_j \int_z^1 \frac{\mathrm{d}x}{x} P_{ij} (z/x, Q^2) D_i^h (x, Q^2), \qquad (2)$$

where P_{ij} are the splitting functions.

Hadronization by Statistical Fragmentation

Fragmentation function is a parametrized phenomenological function, providing the probability of a parton i confine into a hadron h. Its form is motivated by the measured spectra.

Standard parametrization

• "QCD motivated" formula (polynomial approximation) [1, 2]

$$D_i^h(z,Q) = N_i^h z^{\alpha_i^h} (1-z)^{\beta_i^h}$$
(3)

- Theoretical predictions for N, α and β differs from the experiment data
- No physical meaning of parameters N, α and β
- Q-evolved formula is NOT polynomial-like
- Poor agreement with spectra at small momenta z < 0.1

New method

References

• Statistically motivated Tsallis-like formula from non-extensive study of jets [3, 4]

$$D_i^h(z,Q) = N_i^h(1-z) \left[1 - \frac{q_i^h - 1}{T_i^h} \log(1-z) \right]^{-\frac{1}{q_i^h - 1}} \tag{4}$$

- Parameters with physical meaning:
- $\circ q \neq 1$ domination of correlations and fluctuations inside the hadronizing system
- T temperature of the highly correlated hadronizing system
- Theoretical predictions: $q_{jet} = 1 2$, $T_{jet} = 1 10^3$ MeV from non-extensive jet studies, depending on the energy and system size
- Q-evolved formula is NOT Tsallis-like
- Looking for better results at low z with the same number of parameters

Results

Tsallis-like fragmentation parametrization

A new parametrization for fragmentation function in LO is made by fitting $e^- + e^+ \rightarrow$ $\pi + X$ spectra from Ref. [5-8].

Properties of the parametrization (Fig. 3):

- statistically motivated and describes data
- better at small momenta (better χ^2)
- needs no further parameter for better fit!
- agrees with predictions: $q_{fit} = 1.1 1.5$ and $T_{fit} = 10 - 100 \text{ MeV}$ parameters are physical!
- small differences at low energy (Fig. 4).

Fig. 3: Pion spectra and calculations with our standard fragmentation functions [1, 2].

Fig. 4: Our fragmentation compared to standard ones Fig. 5: Q evolution of our fragmentation by solving at small Q. Good agreement between models!

DGLAP. Initial differences are vanishing at high Q.

Cross check: sum rule (Fig. 6):

• Probability of a parton confinement

$$P_i^h(Q) = \int_0^1 \mathrm{d}z \, z D_i^h(z, Q)$$

- Total sum $\sum_{h} P_{i}^{h} \equiv 1$ (any parton confine into a hadron)
- Larger contribution for constituent and light quarks
- Weak energy dependence is similar to [1]
- Difference between fragmentation models vanishes at high energy (DGLAP clears initial differences) see Fig.5

Fig. 6: The fraction of partonic channels hadronize into a pion at scale, Q compared to standard one [1]

Conclusion

- Non-extensive, Tsallis–Pareto-like fragmentation function parametrization is developed
- Physically more motivated form and parameters than standard ones
- Better fits and good performance at small z values
- Parametrization and grids are available at https://www.kfki.hu/~takacsa/
- Student is looking Phd. position, see more at the webpage above

Acknowledgement

Supported by the New National Excellence Program of the Ministry of Human Capacities, K120660, THOR CA15213 and Wigner GPU Labor.

Contact

takacs.adam@wigner.mta.hu barnafoldi.gergely@wigner.mta.hu

See more at arXiv: 1805.

[1] M. Hirai, S. Kumano, T.-H. Nagai and K. Sudoh, Phys. Rev. D75, 094009 (2007);

[2] B. A. Kniehl, G. Kramer and B. Potter, Nucl. Phys. B582, 514 (2000);

[3] K. Ürmössy, G. G. Barnaföldi and T. S. Biró, Phys. Lett. B718, 125 (2012);

[4] G. Bíró, G. G. Barnaföldi, T. S. Biró, K. Ürmössy and Á. Takács, Entropy 19, 88 (2017);

[5] K. Abe et al. (SLD Collaboration), Phys. Rev. D69 072003 (2004);

[6] ALEPH Collaboration, Z.Phys. C66, 355 (1995); Physics Reports 294, 1 (1998);

[7] R. Akers et al. (OPAL), Z. Phys. C63, 181 (1994);

[8] DELPHI Collaboration, Nucl. Phys. B444, 3 (1995); Eur. Phys. J. C5, 585 (1998);

