t
 Performance studies of $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ azimuthal correlations in ALICE3

Eszter Frajna ${ }^{1,2}$, Róbert Vértesi ${ }^{1}$ on behalf of the ALICE Collaboration
Quark Matter Kraków 2022
${ }^{1}$ Wigner Research Centre for Physics,
MTA Centre of Excellence
${ }^{2}$ Budapest University of Technology and Economics
ilifnar

ALICE

Physics motivation and goals

- Azimuthal correlations of $\mathrm{D}^{0}-\bar{D}^{0}$ pairs provide
- a direct access to charm production mechanisms in pp collisions [1].
- a direct measure of momentum broadening by the QGP in $\mathrm{Pb}-\mathrm{Pb}$ collisions, sensitive to the nature of the energy loss mechanism, as well as the degree of charm thermalization in the QGP at low p_{T} [2].

radiative energy loss

collisional energy loss

References:

[1] S. Acharya et al. EPJC 80 (2020) 979.
[2] S. Cao et al. Phys. Rev. C 99 (2019) 5, 054907.

The ALICE 3 detector

- ALICE 3: a next-generation heavy-ion experiment for LHC Run 5 [3].
- Compact all-silicon tracker with high-resolution vertex detector.

- Particle identification over a large acceptance.
- Heavy-flavour hadrons ($p_{\mathrm{T}} \rightarrow 0$, wide η range)
- vertexing, tracking, hadron ID

Reference:

[3] D. Adamová et al. [arXiv:1902.01211 [physics.ins-det]].

Evaluation of signal correlation template - pp collisions

- 2D mass fits to subtract combinatorial background for $\mathrm{D}^{0}-\bar{D}^{0}$ pairs.
- Signal + background for single D mesons from PYTHIA 8.2 events. Pair distributions generated from independent 1D distributions.
- Statistics matched to the expected significance.

$$
\begin{aligned}
F\left(M_{\mathrm{D}^{0}}, M_{\overline{\mathrm{D}}^{0}}\right) & =N_{\mathrm{SS}} f_{\mathrm{S}}^{\mathrm{D}^{0}}\left(M_{\mathrm{D}^{0}}\right) f_{\mathrm{S}}^{\overline{\mathrm{D}}^{0}}\left(M_{\overline{\mathrm{D}}^{0}}\right)+N_{\mathrm{SB}} f_{\mathrm{S}}^{\mathrm{D}^{0}}\left(M_{\mathrm{D}^{0}}\right) f_{\mathrm{B}}^{\overline{\mathrm{D}}^{0}}\left(M_{\overline{\mathrm{D}}^{0}}\right) \\
& +N_{\mathrm{BS}} f_{\mathrm{B}}^{\mathrm{D}^{0}}\left(M_{\mathrm{D}^{0}}\right) f_{\mathrm{S}}^{\overline{\mathrm{D}}^{0}}\left(M_{\overline{\mathrm{D}}^{0}}\right)+N_{\mathrm{BB}} f_{\mathrm{B}}^{\mathrm{D}^{0}}\left(M_{\mathrm{D}^{0}}\right) f_{\mathrm{B}}^{\overline{\mathrm{D}}^{0}}\left(M_{\overline{\mathrm{D}}^{0}}\right)
\end{aligned}
$$

- Precise identification of $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ pairs with a high background rejection can be expected.

2-dimensional invariant mass distribution of D^{0} and $\overline{\mathrm{D}}^{0}$ pairs at $\left|\eta_{\text {daug }}\right|<1.44$

Expected performance in azimuthal correlations - Pb-Pb collisions

- Calculation of estimated $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ pairs in $\mathrm{Pb}-\mathrm{Pb}$ collisions for $35 \mathrm{nb}^{-1}$ luminosity.
- Includes background subtraction and weights to account for $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ reconstruction and selection efficiencies. Normalization to the number of trigger D^{0} mesons.
- Correlation patterns in $\mathrm{Pb}-\mathrm{Pb}$ collisions will be detailed enough to assess the effects of transport broadening and thermalisation, using pp collisions as a reference.

Expected performance for azimuthal correlation distributions of D^{0} and \bar{D}^{0} in $|\eta|<4$, in $0-100 \% \mathrm{~Pb}-\mathrm{Pb}$ collisions, for $\mathrm{L}_{\mathrm{int}}=35 \mathrm{nb}^{-1}$.

