

A Deep Learning Based Estimator for Elliptic Flow in Heavy ion Collisions

N. Mallick^{1,†}, S. Prasad¹, A. N. Mishra², R. Sahoo^{1,3}, and G. G. Barnaföldi²

¹ Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India, ²Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Str., H-1121 Budapest, Hungary, and ³CERN, CH 1211, Geneva 23, Switzerland

1. Introduction

- Transverse collective flow is an important observable in studying Quark-Gluon Plasma (QGP) [1]
- Heavy-ion collisions observe significant elliptic flow (v_2) [2]
- Estimation of reaction plane angle (ψ_R) is non-trivial [3]
- Deep Neural Networks are well suited for mapping complex nonlinear functions [4]

First Deep Learning based estimator for elliptic flow [5]

2. Deep Learning Estimator

- $(\eta \phi)$ space as the primary input space
- $p_{\rm T}$, mass, and an energy term as the secondary inputs
- 32×32 bins each, three such input layers
- Training with Pb-Pb collisions, $\sqrt{s_{\rm NN}} = 5.02$ minimum bias
 - events, simulated with a multiphase transport model (AMPT)
- Early stopping callback to ensure minimal overfitting
- Mean Absolute Error ($\Delta v_2 = 0.0073$) on 10K testing data
- For i^{th} event, and j^{th} feature, the feature value

$$F_{i,j} \leftarrow F_{i,j} + X_{i,j}/w$$
, where $X_{i,j} \in (-\sigma_j, \sigma_j)$.

 σ_i = standard deviation, w = noise parameter

4. Summary

- Final state particle kinematic information as input
- Estimator preserves the centrality, and $p_{\rm T}$ dependence of v_2
- Excellent prediction accuracy against noisy simulation
- Applicable to both RHIC and LHC energy
- v_2 for identified particles, and n_a scaling under study

References

- U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013). 1.
- J. Adams et al. [STAR], Phys. Rev. Lett. 92, 052302 (2004). 2.
- A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998). 3.
- K. Hornik, M. Stinchcombe and H. White, Neural Netw. 2, 359 (1989). 4.
- N. Mallick, S. Prasad, A. N. Mishra, R. Sahoo, and G. G. Barnaföldi, 5. [arXiv:2203.01246 [hep-ph]], and references therein.

†e-mail: Neelkamal.Mallick@cern.ch