Workshop on Heavy flavor tagging in heavy ion collisions - CTU Prague 2019/3/15

ALICE b-jet tagging in Run2 5 TeV pPb collisions with the SV method

Róbert Vértesi (Wigner RCP Budapest) vertesi.robert@wigner.mta.hu Filip Krizek, Artem Isakov (NPI Prague) Ashik Ikbal Sheikh (VECC Kolkata)

This work has been supported by the Hungarian NKFIH/OTKA K 120660 grant and the János Bolyai scholarship of the Hungarian Academy of Sciences

goals and datasets

pp:

- pQCD benchmark and baseline for nuclear modification
- Color charge vs. mass/flavor effects?
- **p-A**:
 - CNM effects?
 Baseline for modification in hot medium
- A-A:
 - mass ordering?
 - Low/intermediate pT <u>unique</u>
 - contribution of gluon-splitting to direct b quark production?
 - Radiative or collisional energy loss?
- Experimental data:
 - pp 2017 data at 5 TeV (IP method) ~600M evts
 - p-Pb 2016 data at 5 TeV (IP and SV methods) ~900M Minimum Bias evts
 - ITS+TPC tracks, p_T>0.15
 - Anti-kT jets, R=0.4, |η|<0.5

extracting the b-jet cross section

- A. Jet Reconstruction
- B. b-jet selection
 - **b-jet**: presence of a b-hadron inside a cone with given R centered on the jet axis
 - 1. Impact parameter significance method based on the closest approach to the primary vertex of tracks inside a jet Hadi Hassan (Linus Feldkamp, Min Jung Kweon, Minjung Kim)
 - 2. Displaced secondary vertex method secondary vertex reconstruction and evaluation of its distance from the primary vertex - Ashik Ikbal Sheikh, Filip Křížek, Artem Isakov, R.V. (Elena Bruna, Lukás Kramárik, Gyulnara Eyyubova)
- C. Statistically remove non-b jets from tagged sample
- D. Unfolding
- E. Efficiency correction

Displaced Tracks

Secondary

Verte

do

extracting the b-jet cross section

- A. Jet Reconstruction
- B. b-jet selection
 - **b-jet**: presence of a b-hadron inside a cone with given R centered on the jet axis
 - 1. Impact parameter significance method based on the closest approach to the primary vertex of tracks inside a jet Hadi Hassan (Linus Feldkamp, Min Jung Kweon, Minjung Kim)
 - 2. Displaced secondary vertex method secondary vertex reconstruction and evaluation of its distance from the primary vertex - Ashik Ikbal Sheikh, Filip Křížek, Artem Isakov, R.V. (Elena Bruna, Lukás Kramárik, Gyulnara Eyyubova)
- C. Statistically remove non-b jets from tagged sample
- D. Unfolding
- E. Efficiency correction

Jet Vertex Jet Vertex Jet

5

spectrum extraction

Extract SV tagging efficiency from Monte Carlo

$$\epsilon_{b,c,udsg}(p_{\mathrm{T,ch.\ jet}}^{det.}) = \frac{N_{b,c,udsg}^{tagged}(p_{\mathrm{T,ch.\ jet}}^{det.})}{N_{b,c,udsg}^{gen}(p_{\mathrm{T,ch.\ jet}}^{det.})}$$

Extract **purity** from template fit and MC

$$P(p_{\mathrm{T,ch. jet}}^{det.}) = \frac{N_{\mathrm{b-jets}}(p_{\mathrm{T,ch. jet}}^{det.}, \mathrm{jet})}{N_{\mathrm{all jets}}(p_{\mathrm{T,ch. jet}}^{det.}, \mathrm{jet})}$$

nd MC is essential!

==> Reliable MC

Correct tagged inclusive raw spectrum:

$$\frac{1}{N}\frac{dN_{\text{measured,b}}}{dp_{\text{T}}} = \frac{1}{N}\frac{1}{\epsilon_{b}} \cdot P \cdot \frac{dN_{\text{tagged}}}{dp_{\text{T}}}$$

• Unfolding and final correction step $p_{T,ch.}^{det.}$ jet $\rightarrow p_{T,ch.}$ jet $\frac{d\sigma_{b-jet}}{dp_T} = \frac{1}{L_{int}} \cdot \text{Unfolded}\left(\frac{dN_{\text{measured,b}}}{dp_T}\right)$

analysis

- Data extraction (Run2 p-Pb, LHC16{q,t}):
- Efficiency and purity corrections
 - Efficiency: LHC17h6{a,b,c,d,e,f}2
 - Purity #1 "POWbc": real inclusive jets and POWHEG c,b spectra
 - Purity #2: "data-driven": template fits from LHC17h6_2 simulations
 => a combined "hybrid" method
- Unfolding (SVD & Bayesian, binned)
 - Matrix based on LHC17h6_2, outliers removed (p_T<p_Thard x4)
 - PYTHIA hard processes + EPOS underlying event
- Systematics
 - Tracking & jet reconstruction related
 - b-tagging related

tagging efficiencies vs. p_T

- Tagging cuts
 - Dispersion of reconstructed secondary vertex σ_{vtx}
 - Significance of primary-secondary vertex distance $SL_{xy} = L_{xy}/\sigma_{Lxy}$

tagging performance

- Evolutions of efficiencies and mistagging rates with SL_{xy}
 - Left: efficiency vs. SLxy, no sigvtx cut applied
 - Right: efficiency vs. mistagging rates for different SLxy values

purity & tagging correction, POWHEG

Purity obtained as:

- Going to detector level: POWHEG spectrum * detector matrix
- Using the good old formulae

$$f_{b}(p_{T}^{det}) = \frac{N_{b}^{tagged}(p_{T}^{det})}{N_{inclusive}^{tagged}(p_{T}^{det})}$$

$$N_{b}^{tagged}(p_{T}^{det}) = N_{inclusive}^{tagged}(p_{T}^{det}) - N_{b}^{Powheg}(p_{T}^{det}) \cdot \varepsilon_{b}(p_{T}^{det}) - N_{c}^{Powheg}(p_{T}^{det}) \cdot \varepsilon_{c}(p_{T}^{det}) \\ - \left(N_{inclusive}(p_{T}^{det}) - N_{c}^{Powheg}(p_{T}^{det}) - N_{b}^{Powheg}(p_{T}^{det})\right) \cdot \varepsilon_{lf}(p_{T}^{det})$$

uncertainty in POWHEG

Several variations (defaults in bold) and cross-variations:

- m_b=4.5, 4.75, 5.0 GeV; m_c=1.3, 1.5, 1.7 GeV
- factorization scale = 0.5, 1.0, 2.0; renormalization scale = 0.5, 1.0, 2.0
- Translates to a factor ~2 uncertainty on the corrected spectrum (later)
- See more: backup slides and <u>https://twiki.cern.ch/twiki/pub/ALICE/BtagSecVtx/PowhegSystematicsBeauty_ashik.pdf</u>

purity, data-driven - template fits

Example: Minuit, lowest pT bin Example: RooFit, higher pT bin Probabilty density (GeV/c^{2)⁻} Number of jets < 20 GeV/c, L_{xy}/σ_{Lxy} 40<p____<50 GeV/c $>7, \sigma_{sv} < 0.03 \text{ cm}$ ALICE simulation $|\eta_{iet}| < 0.5, N_{reco vtx} > 0$ PYTHIA + EPOS, p–Pb $\sqrt{s_{NN}}$ = 5.02 TeV $L_{xy}/\sigma_{Lxy} > 7, \sigma_{vtx} < 0.03$ Anti- $k_{\rm T}$ track jets with R = 0.4, $|\eta_{\rm int}| < 0.5$ - data, all jets LF-jet 0.107 ± 0.14 c-jet 0.384 ± 0.11 b-jet 0.509 ± 0.14 0^{-2} Raw data from MC 10^{-3} LF jets: 0.19 ± 0.04 c jets: 0.48 ± 0.03 b jets: 0.33 ± 0.02 Raw data / Fit 10^{-1} 2 0 3 3.5 0.5 2.5 4.5 Invariant mass of secondary vertex (GeV/ c^2) SV Mass [GeV]

Minuit vs. RooFit on measured data

- RooFit: template errors ignored can be a problem
- <u>Minuit</u>: correct treatment of errors;

$$F(n) = \sum_{i=1}^{nbins} \frac{(Data_i - B_i * p_B - C_i * p_C - LF_i * p_{LF})^2}{\sigma_{Data_i}^2 + (\sigma_{B_i} * p_B)^2 + (\sigma_{C_i} * p_C)^2 + (\sigma_{LF_i} * p_{LF})^2}$$

but: convergence problems at higher p_T

purity, data-driven - p_T-dependence

- Minuit convergence problems already from 30 GeV/c in some cases, above 40 in most cases
 - Note: merging the bins did not help
- RooFit different at low- p_T (and we trust it less than Minuit)
- But: At higher p_T-bins, RooFit and Minuit always match
 - Perhaps less effect of template errors because of wider distributions

purity - comparison of methods

Good news: very good consistency with the POWbc method

- POWbc and data-driven MC template closure: good match
- POWbc and data-driven with real data consistent within errors
- Strategy: data-driven constraints to be used to constrain purities from POWHEG

purity comparison examples

- Default POWHEG describes data regardless of tagging cut
- Scale variations cause big differences

hybrid method: statistical exclusion

For each POWHEG setting:

- Compute χ² for each tagging cut
- sum them up
- Divide by sum of N_{points}
- Keep statistically acceptable settings only (χ²/N<10)
 - c fac=1 c ren=1 b fac=0.5 b ren=2
 - c fac=1 c ren=1 b fac=1 b ren=2
 - c fac=2 c ren=2 b fac=2 b ren=2

chi2/N values of the simultaneous test

unfolding - SVD

- Generally good
 - Folded/raw ~1
 - Uncertainties below fluctuations
 - Convergent iteration (unfolded/prior)
 - kSVD>=4
- Some oscillation
 - ~2σ; plan to take care by rebinning or cropping the response matrix

unfolding - bayesian

- Generally good
 - Folded/raw ~1
 - Uncertainties below fluctuations
 - Convergent iteration
 - kBayes>=4
- Some oscillation
 - ~2σ; plan to take care by rebinning or cropping the response matrix

0 0

40

60

80

spectrum with systematics

100

120

140

P_T^{jet}

- Corrections with the Hybrid method
- Principal analysis: SL_{xy}>7, σ_{vtx}<0.03
- Dominant uncertainties:
 - hybrid purity
 - unfolding (including method, regularization and prior)
 - tracking
 - tagging
- Consistent with
 POWHEG within errors

spectrum with systematics

- Corrections with the Hybrid method
- Principal analysis: SL_{xy}>7, σ_{vtx}<0.03
- Dominant uncertainties:
 - hybrid purity
 - unfolding (including method, regularization and prior)
 - tracking
 - tagging
- Consistent with POWHEG within errors
 - Range: 10-100 GeV/c

some systematics (visualization)

Ratios of systematic variations compared to principal analysis

Status Summary

We computed the 5 TeV pPb b-jet spectrum

- New hybrid purities and efficiencies
- Corrections are consistent
- Most of the systematics are at hand
- Detector matrix from EPOS+PYTHIA the extent of background effect low p_T needs to be addressed
- New unfolding method, slight oscillations crop matrix?
- Some minor (?) systematics needed:
 - unfolding: test with different binning
 - contamination of primary tracks by secondary tracks
 - track p_T smearing
- Next step: Preliminary for SQM

extracting the b-jet cross section

- 2. Displaced secondary vertex method secondary vertex reconstruction and evaluation of its distance from the primary vertex - Ashik Ikbal Sheikh, Filip Křížek, Artem Isakov, R.V. (Elena Bruna, Lukás Kramárik, Gyulnara Eyyubova)
- C. Statistically remove non-b jets from tagged sample
- D. Unfolding
- E. Efficiency correction

Impact parameter significance method

secondary production point

- Discriminator: $sd_{xy} = \delta d_{xy}$, where δ is the impact parameter sign: $sign(\vec{d_{xy}}, \vec{p_{iet}}).$ axis perpendicula o the iet axis
- Track counting Based on #tracks fulfilling threshold
 - N=1 : high-efficiency ; N=2 ; N=3 : high purity
- Efficiency/purity curves:

Production of b-jets (pp and pPb)

- Production is consistent within N=1, 2 (shown), 3
- Constistent with POWHEG w/ scale variation
- b-jet fraction drops at low-p_T in pPb

R_{pPb} of b-jets

- The R_{pPb} of b-jets is consistent with unity
- …consistent with CMS measurements
- ...and with theory predictions within uncertainties
- The interaction of the b-jet with the cold nuclear matter has no effect on the b-jet within uncertainties.

Systematics and ToDo

Uncertainty source		p _T bins	
		10-20	20-30
collisions	Unfolding algorithm	3.14%	
	Regularization parameter	2.03 %	
	Prior	2.09%	2.91%
	Unfolding range	1.40%	1.43%
	δρτ	0.12%	0.29%
p-Pb	Tracking Efficiency	7.67%	10.60%
	Tagger working point	0.31%	0.24%
	V ⁰ rejection	0.20%	0.05%
	Normalization uncertainty	3.24%	
	Total	9.47%	11.7%
pp collisions	Unfolding algorithm	3.23%	
	Regularization parameter	3.3%	
	Prior	1.19%	0.19%
	Unfolding range	0%	
	Tracking Efficiency	9.3%	10.6%
	Tagger working point	0.13%	0.36%
	Normalization uncertainty	2.29%	
	Total	10.7%	11.7%

ToDo (Hadi)

- Change the jet probability distribution, and use another discriminator for the templates used in the tagging efficiency determination.
- Use another distribution to fit the purity.
- Cancel the correlated uncertainties on the b-jet fraction and the R_{pPb}

Workshop on Heavy flavor tagging in heavy ion collisions - CTU Prague 2019/3/15

15 March 1848 Hungarian Revolution against the Habsburg rule

> Hungarian Academy of Sciences Founded 1830 count István Széchenyi

This work has been supported by the Hungarian NKFIH/OTKA K 120660 grant and the János Bolyai scholarship of the Hungarian Academy of Sciences

POWHEG simulations

Changes in "new" since the "old" one:

- acceptance |eta|<0.5 instead of |eta|<0.6 scaled by 1/1.2</p>
- more suitable 1-GeV/c binning
- Lorentz-boost applied
- p-Pb nPDF applied
- No significant difference between "old" and "new"
- Marginal match to FONLL

POWHEG systematics

Data-driven fits to real data

Unfolding closure test - inclusive

Jet probability algorithm

Efficiencies

Data-driven efficiency underestimated my MC!

b-jet purity

b-jet tagging purity is consistent between data and MC.

Underlying event

- UE density: ρ = median(<sup>p_{T,i}/A_i).C, where C = <u>CoveredArea</u>/TotalArea.

 Correct the jet p_T:
 </sup>
 - $p_{T,j}^{Sub} = p_{T,j} \rho A_j.$

- UE fluctuation for unfolding
 - Random cone method

$$\delta p_T = p_T^{RC} - \rho \pi R^2$$

 If overlap with signal jet, throw again

Unfolding

- Correction for detector effects.
 ⇒ Detector response (DR) matrix is needed.
- The DR is built by matching jets at the detector level to jet in the generated level: $\Delta R_{jet1, jet2} =$

$$\sqrt{(\eta_{jet1} - \eta_{jet2})^2 + (\phi_{jet1} + \phi_{jet2})^2} < 0.25$$

Correction for UE fluctuations (for p–Pb collisions).

 \Rightarrow background fluctuation (F) matrix need,

- The F matrix built from the δp_T distribution.
- The SVD unfolding was used (A. Hoecker et al).
- Prior: PYTHIA b-jet spectrum (jet-jet MC).
 - Combine both matrices for p-Pb : $R = F \times DR$.

p-Pb @ √s_{NN} = 5.02 TeV

PT, jet (GeV/c)

- Closure test shows that the measured spectrum is correctly unfolded
- Correct for kinematic efficiency:
 fraction of remaining jets after rebinning.

Production cross-section (pp and pPb)

- Production is consistent within N=1,2,3
- Constistent with POWHEG w/ scale variation

b-jet fraction (pp and pPb)

Production is consistent within N=1,2,3 and POWHEG

R_{pPb} of b-jets

N=2

N=1

- The R_{pPb} of b-jets for N=1,2,3 is...
 - consistent with unity
 - and with theory predictions within uncertainties
- The interaction of the b-jet with the cold nuclear matter has no effect on the b-jet within uncertainties.

Comparison to CMS and ToDo

ToDo (Hadi)

- Change the jet probability distribution, and use another discriminator for the templates used in the tagging efficiency determination.
- Use another distribution to fit the purity.
- Cancel the correlated uncertainties on the b-jet fraction and the R_{pPb}